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QUARKONIUM AND EXTENDED CONSTITUENT QUARKS*
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Constituent quarks with electromagnetic and strong-interaction form-factors behaving
as 1/4/02 for 0% = o0 are considered. One-gluon-exchange potential is used to calculate
the hfs and fs of quarkonium qq built of such extended quarks. No confining potential is
included in the calculations but its possible form, compatible with the picture of extended
quarks, is suggested. The constituent quark gets then a strong-interaction radius 7, of large
magnitude =1 GeV~! being in contrast with its small electromagnetic radius <0.1 GeV—1. So
it behaves as a composite object with electric charge concentrated in the middle and colour
broadly extended around (with a range comparable to actual hadron radii). Thus, if the
structure of a constituent quark is dominated by the parton configuration consisting of one
current quark and one current gluon, the gluon must be effectively lighter than the quark.
The above picture emerges if the confining potential does not play any essential role in the
lowest states in charmonium. It is true in fact for the suggested confining potential which
switches on only for r > 2r,.

It has been recently conjectured that the constituent quarks inside hadrons may
display in electromagnetic interactions an elastic form-factor G(Q? which behaves

as 1/\/ 02 for Q2 —» oo [1]. Some arguments have been presented that such a behaviour
of G(Q?) should in fact appear if the constituent quarks are parton clusters consisting in
the lowest-order parton approximation (i.e., in the valence approximation) of one current
quark and one current gluon each (plus further current quarks and gluons appearing in
higher parton approximations). In the Bjorken limit such clusters must be completely
dissociated into their partons if exact scaling is to hold in this limit. Then, after this dis-
sociation (which may be considered as a phase transition), the nucleon can be described
as a parton cluster containing three valence quarks and three valence gluons (plus sea
quarks and sea gluons). It has been argued that in this case the nucleon structure functions
should behave as (1—x)* for x — 1, while the behaviour of the nucleon elastic form-
-factor should be as 1/Q%? for Q? —» oo (if the Drell-Yan-West relation is true).

* Work supported in part by Polish Ministry of Higher Education, Science and Technology, project
M.R.L7.
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If the quark electromagnetic structure described by G(Q?) really exists, it is likely that
also in strong interactions the constituent quarks display a structure corresponding to an
elastic form-factor G,(Q?), possibly with a similar asymptotic dependence on Q2 as
G(Q?). Then, if G(Q*) ~ l/\/ Q? for Q* — oo, the one-gluon-exchange interaction between
two constituent quarks can be described by the effective gluon propagator G2(Q%)/Q?
~ 1/Q* for Q% —» 0. It leads to the asymptotic dependence ~ 1/pf of the inclusive
cross-section for the process pp — hX, where h is a hadron [1]. From the experimental
point of view, the quark-quark cross-section do/dt ~ (s*+u*)/s?t* implied by the inter-
action G2(t)/t ~ 1/t* considered here seems to be worse (being too peripheral) than the
quark-quark cross-section dg/dt ~ 1/st® introduced phenomenologically by Field and
Feynman [2] (which gives also the asymptotic dependence ~1/p% for pp — hX). The
difference, however, does not seem to be terrible (in the actual experimental situation).
In the literature, different shapes of the form-factor Gy(¢) have been considered and
reasonably fitted to the experimental data (cf. e.g. [3, 4]).

In the present note we discuss the one-gluon-exchange static interaction between
two constituent quarks, each having the form-factor G(Q?) ~ 1/,/Q2? for Q* — 0.
In this case, the attractive potential for quark-antiquark interaction is given by the formula
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The asymptotic behaviour of G,(Q?) for Q2 — w0 in Eq. (1) is not yet specified. If now
Gy(q?) ~ 1/q for g - oo (where ¢ = |q]), we can conclude from the relation
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that o (r) ~ 1/r? for r —» 0. We will assume that p,(r) ~ 1/r? for r < ro. For simplicity we
shall put o (r) = 0 for r > r,. Then r, is a strong-interaction radius of the constituent
quark. In this case we obtain from formula (5) the quark form-factor

G(@) = — j ésmé Si(aro) 0)

qro

(plotted in Fig. 1) and from formula (2) the quark-antiquark potential V(r) = (8,/ro)U(x),
where B, = f?/4n, x = r[r, and the function U(x) (plotted in Fig. 2) is given as follows:
(@) for r<rg

— - 2 n
U(x) = &%%ﬁma—xn T 2N X
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(i) for ro < r < 2r
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(iii) for r = 2r,
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Fig, 1. The strong-interaction form-factor G4(¢?) of the constituent quark as given by Eq. (6), compared
with its asymptotic form m/2gr, valid for g — o (g = |g])
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From Eq. (7) we get for r <ry

7!2 x2
U(x) =~ 3 x—2+0(x?) (o(xz) = - %’)' (10)
Practically, the Coulomb form (9) is valid for r 2 1.3r,, whereas the linear approximation
(10) works for r S 0.7r,. So the potential ¥(r) has here the inverted behaviour to the well
known phenomenological potential —o/r+r/A*+ V,. However, if rg is very large, formula
(10) simulates for moderately large r the linear confining potential /4% + ¥, [5S]. Of course,

l 2 3

Ulx)

2

Fig. 2. The quark-antiquark potential U(x) (in units of f/ro) as given by Egs. (7)H9), compared with
its Coulomb form —1/x valid strictly for x > 2(x = rfro)

our potential ¥(r) provides no real quark confinement. This confinement may be provided
here by adding to V{(r) the confining potential of the linear form

r—2r,
5z 00r—=2r0) (11)

Vo(r) =

which switches on at point » = 2r,. This is reasonable since only for r > 2r, two spherically
shaped constituent quarks are spatially separated and, therefore, should span a confining
string (or tube) made of the gluon field. In this note, we will ignore in the calcula-
tions this confining potential.

Now, we solve numerically the Schrodinger equation for quarkonium qq with the
potential ¥(r) given by Egs. (7)-(9), where f, and ro as well as the quark mass m, are
free parameters (for each kind of quarks q). Subsequently, we calculate the first-order
perturbation caused by spin-orbit, tensor and spin-spin couplings,

Vis+ Vr+ Vs, (12)
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where [6]
v, A -
Ls = mfl r dr ’
po_ L (1av d2V3§_72§2
T 6m§ r dr dr? r ’
1 22
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6m;
while
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.\ ., e N[> T\ -
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We neglect the relativistic orbital corrections,

-4 - 2
p 1 1 -, ro
Vib=— —5 + —5 AV - |4 +{-- s 15

® 4m;:’ 4m,:2l ZmZ [p (r p)] s

as they are spin-independent and give, therefore, no contributions to hfs splitting 35,-1S,
and fs splitting 3P,-3P,—3P, which at present are of main interest for quarkonium. The
positronium-like annihilation potential

1

2
dm;

V,

ann = AVS? (16)
is here obviously absent as the virtual transition quarkonium = gluon is forbidden by
the colour conservation. In Eqgs. (13) (and Egs. (15)) we have assumed that the one-gluon-
-exchange potential ¥(r) is originated by vector gluons, so it transforms as the time com-
ponent of a 4-vector.

In the case of charmonium cc we take as the input two masses M(135,) = 3095 MeV
and M(23S;) = 3684 MeV, and fit to them various values of three parameters f;, r, and
m,. The results are presented in Table I, where M(n/) are masses (in MeV) calculated
from the Schrodinger equation, M(n?**'l;)— masses (in MeV) corrected by first-order
perturbation and I'(n3S, — I*]-) — the leptonic widths (in keV) deduced from the non-
relativistic formula [6]

16702Q2

Ir(n3s ")y = —=
81~ 1) = 3655,y

[9s(0)} (17)
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TABLE 1

Comparison of calculations and data for charmonium. Explanation in the text
Bs 1.8 2.35 2.8
ro (in Gev-1) 1.27 2.04 2.50 Data
mq (in GeV) 1.99 2.05 2.10
M(S) input input input 3095+ 32
M(2P) 3600 3536 3508 35224 5%
MQ2S) input input input 3684 +-4°
M@3D) 3806 3796 3785 3772+ 54
M138,)— M(11S,) 216 123 98 ~ 270°
M(238,)— M(21So) 38 30 29 ~ 230f
M(23P,)— MQ23P,) 118 108 99 ~ 44
MQ3P,)~ MQ23P,) 121 98 86 ~ 93
I'assy; » ) 15.0 10.2 8.9 4.8+0.6
238, » I*lH) 2.6 29 32 2.1+£03
(238, = 2°P,+y) 37 26 21 16+9
@238, » 2°P,+v) 60 43 35 16+ 8
I'238, — 23P,+y) 78 56 46 16+9

2
SM(1°Sy); L) (2j+1) M(23P;); one gets precisely the experimental value if f5 = 2.5and ro = 2.19

(then mgq = 2.07); °M(2%S,); 9M(33D,); a better experimental value to compare with would be
3

ﬁZ(Zj—i—l)M(?Dj); ®The identification of X(2.82) as 115, is, however, not certain; fThe identifi-
j=1

cation of %(3.45) as 2'S, is, however, doubtful.

with c-quark charge Q, put equal to 2/3. In this Table we give also I'(2°S; — 23P;+y) — the.
electric dipole y rates (in keV) calculated from formula

2 .
B0 A DM~ M@P)PICPIFRSE,  (18)

I(2°s, » 2°P;+y) =
where (2P||r}|2S) is the radial reduced matrix element. In Eqs. (17) and (18) we use the
experimental values of masses. The obtained relation between B, and r, is plotted in
Fig. 3.

In the case of Lederman’s quarkonium we put [7] M(135;) = 9.4 GeV and
M(23S,)— M(13S;) = 0.6 GeV, ie., the same 235,-13§; splitting as for charmonium.
Then the relation between f, and r,, is plotted again in Fig. 3. We can see that the possibility
of equal B.’s and r,’s for both quarkonia is not excluded by the above mass input. This
case corresponds to f, = 2.35 and r, = 2.04 GeV~! which imply that m, = 2.05 GeV
and m, = 5.36 GeV for charmed quark and Lederman’s quark, respectively. Masses
M(nl) calculated in this case for charmonium and Lederman’s quarkonium are compared
in Table II

In conclusion, we would like to point out that in the case of charmonium the situation
with masses of low lying states, leptonic widths and y rates in our model (with extended
quarks but without confining potential) is somewhat worse but roughly the same as in
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charmed quark

Lederman’s quark

&

2 3
Bs
Fig. 3. The dependence ro = ro(B;) for charmed quark and Lederman’s quark. The intersection cor-

responds to fs = 2.35 and ro = 2.04 GeV~! giving the quark mass my = 2.05 GeV in the first case and
mg = 5.36 GreV in the second

the popular (also nonrelativistic) model with pointlike quarks bound by the potential
r

as
O+ = =+

+V, 19)
plus perturbation terms (13), where our ¥{r) is replaced by V(r)+ V,(r) as given in Eq. (19).
This is correct if not only ¥(r) but also the confining potential ¥ (r) transforms as the

TABLE II

Masses of states (in GeV) and average distance between quarks (in GeV-') in charmonium and Lederman’s
quarkonium if s = 2.35 and 2r, = 4.08 GeV-! (then 2mq = 4.1 GeV and 2mg = 10.7 GeV, respectively)

Charmonium L’s guarkonium

n { n

r Min | &> M(n) <r>
1 S 0 input 1.6 input 1.1
2 P Q 3.536 2.7 9,78 1.6
2 S 1 input 4.1 input 22
3 D 0 3.796 4.5 10.07 2.3
3 P 1 3.833 6.1 10.19 31
3 S 2 3.883 7.9 10.29 39

time component of a 4-vector. It is known, however, that for scalar ¥ (r) the situation
in the popular model changes and is rather improved [6, 7). The fs in our model and in
the popular model is of a good size and proper ordering but of a wrong proportion between
M(23P,)-M(23P,) and M(23P,)-M(2°P,). The bfs in both models is generally much too
small if the leptonic widths have to be not too large. The present experimental identification
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of 1S, and 21§, states is, however, by no means certain. The y rates in both models are
of good order. Notice that our coupling constant B, = f2/dn ~ 2 for extended quarks
without confining potential is one order of magnitude larger than the effective (running)
coupling constant «, = (4/3)g?/4n for pointlike quarks with confining potential. We
do not discuss in this note hadronic widths as the theoretical situation there is less clear,
especially in the case of extended constituent quarks, being much more model-dependent.

One can think of a few improvements of our model:

(¢) To include a confining potential V (r), possibly in the form (11), which may be
the time component of a 4-vector or alternatively a scalar or eventually a mixture of
both. This can considerably change hfs splitting and improve the proportion in fs splitting.

(i) To take into account in a more exact way the relativistic dynamics [8] in quar-
konium and in its leptonic decays [9, 10]. This may hopefully relax the unwanted connection
between hfs splitting and leptonic widths and also improve the proportion in fs splitting.

In the picture which emerges from fitting our model to the data, the constituent
quark can be characterized by a large strong-interaction radius 2 1 GeV-! (which is
comparable to actual hadron radii) and small electromagnetic radius < 0.1 GeV—! as
the latter must be compatible with small bieaking of Bjorken scaling in deep inelastic
lepton-nucleon scattering at large x = Q%2Mv. Thus, if the constituent quark consists
in the valence approximation of one current quark and one current gluon, the gluon
must be effectively lighter than the quark, because only the latter carries the electric
charge while the colour (which is the strong-interaction charge) is ascribed to both con-
stituents. Then the gluon range in the quark-gluon wave function (which is practically
equal to the strong-interaction radius of the constituent quark) is larger than the quark
range (which is equal to the electromagnetic radius).

The above picture of the constituent quark may be drastically changed if the confining
potential plays an essential role in quark interactions even in the lowest charmonium
states. It is not the case, however, for the confining potential ¥ (r) of the form (11) which
switches on only for r > 2r, (i.e., in the Coulomb region of the potential ¥(r)). This can
be seen from Table II which presents the average interquark distance {r) in charmonium
and Lederman’s quarkonium calculated for f, = 2.35 and r, = 2.04 GeV-! (without
- the confining potential). Table II shows that in the lowest states 1.5 and 2P this distance
in charmonium is distinctly smaller than 2r,. On the other hand, already in the state 3D
it exceeds 2r, so that the confining potential (11) begins here to be relevant. In Lederman’s
quarkonium the confining potential is less important if 7, does not decrease much, which
is reasonable as far as ry is practically equal to the gluon range. In Table II the “universal”
values of parameters f, and r, are used corresponding to the intersection in Fig. 3. Then,
still in the state 3S the distance {r) in Lederman’s quarkonium is smaller than 2r,.

Calculations including the confining potential of the form (11) are in progress.
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