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NEW ON-SHELL S-MATRIX RELATIONS FOR POTENTIAL
SCATTERING

By K. SANDLER
Institute of Nuclear Physics of the Czechoslovak Academy of Sciences, Prague*
( Received August 10, 1977; final version received April 14, 1978)

Some identities for on-shell S-matrices in consecutive scattering on two potentials are
derived. As a straightforward consequence, the first order formula for the perturbed on-shell
S-matrix is obtained. Finally, a new derivation of equations of variable phase method is
proposed.

1. Introduction

Questions related to the potential scattering from a sum of two potentials have been
extensively discussed in the literature, see e. g. {1, 2]. We present here an alternative
approach to the problem. The kinetic energy operator and two consecutive potentials are
used to construct three on-shell S-matrices. A simple multiplication rule for them is the
main result of Section 2. As a consequence, the additivity of phase shifts is established in
cases where these are sufficient for the parametrization of the S-matrix.

In Section 3 we give the identities which relate a derivative of the on-shell S-matrix
to the matrix elements of the derivative of the potential (with respect to the parameter).
A special case of these relations is already known [3]; besides generality our derivation
seems to be extremely simple and transparent because of the new formalism used.

Section 4 is devoted to a new formal derivation of the phase equation [4]. The
procedure described there may be easily generalized to obtain similar equations in any case
of interest (e. g. coupled channels).

2. Additive interaction

In this section we shall derive some formal relations in the problem of the elastic
scattering of a particle by a sum of two potentials ¥; and ¥,. In that case there are two
basic possibilities of decomposing the total Hamiltonian H,

H = Ho+V+V;
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into an unperturbed part and a perturbation. As the unperturbed part we may take either
the kinetic energy operator H, or the operator

III = HO + Vl'
The different decompositions of the Hamiltonian into a “free” and a perturbation part

lead to the construction of thiee on-shell S-matrices. The S-matrices are related by

a m ultiplication rule as will be shown below.
We first introduce three auxiliary operators depending on a real parameter n > 0.

These are

U, (E) = , la

or(E) E—Ho—in E—H,+in (1)
E-H,+in E—H,—in

U (E) = — - e (1b)
E—-H,—in E—H+in

and

E—H,+in E—H,—i

UgE) = — 2 2 (1¢)

E—H,—in E—H+in
From these definitions we infer
Uoz(E) = Uo1(E) ) Ult(E)' (2)

As is obvious from Eq. (1), all three bperators U are unitary. However, it should be
kept in mind that these operators are not equal to the usual S-matrices. After some purely

algebraic calculations we find that

1
Ug(E) = 1-2in ————— to,(E+inp) —/m8m8m 3a
01(E) "E_Ho_i'l o1( n)E—Ho+i11 (3a)
U,(E) = 1-2i ! t(E+in) - (3b)
= —_— _— 1 _—,
i "E—H,—im TV EZH, +in
Uo(E) = 1-2i ! to(E+in) ! (39
=1-2ip ———— n—-—,
o TE—Hy—in "W E _Hy+in
where the operators #,,, #;, and ¢y, are defined as follows:
1
to(E4in) = Vi4+V, ———— V, (42)
o1( in) 1 1 E—H, +in 1
W (E+in) = Vet Vs ———— V. (b)
wlE-+1in) =V, 2E—Ht+in 25
1
toE+in) = Vi+Vo+(Vi+ Vo) ———— (Vi + Vo). (4c)
ot )] 1 >+ Z)E—Ht+i7]( 1 2)
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Here t,; and f, are the well-known scattering operators, whereas the definition of #,,
is slightly unusual since the unperturbed part ¢,, differs from the pure kinetic energy
operator. A similar definition of the scattering operator is used, e. g. in the distorted
wave calculations where the potential ¥, represents pure Coulomb interaction.

Insering Eq. (3) into Eq. (2), we obtain a relation between the operators #,,, #,, and
to.. Now we multiply this relation by in. Thus we arrive at the equation:

e to(E+in) ————
o, o ET e
in

b (E+i

E—H,—in 1t( )]

LT Evin) — (=2in)
——— e in) ———— x(=2i
E—Ho—in "W EH, T in 1

1
X ————— 1, (E+in)
in

in
E—H,— E—H,+in

—in in
= ———— toE+in) ——————. 5
E=Hy—in *ET M g H T ©)
We now introduce a complete orthonormal set of free-particle states |y correspond-

ing to H,, where the index ¢ describes a proper set of discrete quantum numbers. These
states obey the relations

QuElxE) = 800(E' —E), (62)
Y JdEE> gl =1, (6b)

[4
and the Hamiltonian Hy is diagonal in this basis.
In order to afrive at the on-shell relation among operators f,4, 5, and ¢y, we take
the matrix element of Eq. (5) between the states |x%» and |xg). It yields the equation:

Qo1 (E+in) sy +<yir it (E+in) viE
=211 Y s ltor(E+in) 1x5 > <viz ity (E+in) lyis> = {xglto(E+in) X5, (7)

where the limit  — 0+ is understood. Therefore the state
ook . in
ey = lim ———— |¥5>, 8)
I¥ie> os E—H, +in Ixe> (

being the eigenstate of the Hamiltonian H,, corresponds to the superposition of free and
outgoing waves. Moreover, in order to obtain the equation (7) we have used the identities

= to(E+in) (9a)

V), ———— _—,
IE—H1+in E—H,+in

Vilwie) = tor(E+in) x5, (9b)
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and spectral representation of the unit operator based on the set of states (8). In general,
this set of states is not complete. Nevertheless, the bound states of the Hamiltonian H,,
if any, are- unimportant here because the energy E is chosen to be real and positive.

Finally, the equation (7) can be simplified. For this purpose we introduce three unitary
on-shell S-matrices:

SoH(E) = 8. —2mix |to1(E+in) 25D, (10a)
STUE) = 80— 2milyi7 [ty (E+in) 955D, (10b)
SGE(E) = J.0—2mid x5 |to(E+in) 1XE- (10¢)

The unitarity of these matrices is a well-known fact, we do not prove it here. By means
of Eq. (10), equation (7) can be rewritten and this leads to the following equation:

Sol E) = So1(E) - S1(E). an

This equation is the goal of considerations in this section. It should be noted that
the time evolution operators of a quantum system are related in a manner similar to that
of the operators in Eq. (11).

We end this section by presenting a special case of Eq. (11). We shall assume the
S-matrices (10) to be diagonal (e. g. for central potentials ¥, and V), then the phase
shifts are sufficient for their parametrization:

SGi(E) = 8™ ®), (12a)
T(E) = 8,1, (12b)
SSE(E) = 6,820 P, (12¢)
Inserting Eq. (12) into Eq. (11), we obtain the phase shifts additivity rule
06 E) = 054(E)+67(E), (13)

as was stated in the i ntroduction.

3. The first order formula

On the basis of the results obtained in the previous section we may now derive the
relations which express a change of the on-shell S-matrix elements caused by a change
of the potential. A special case of these relations has already been derived [3] in various
contexts and may be obtained as a simple consequence of Eq. (16) below.

Suppose ¥, is a potential in which A is a parameter and S; is the corresponding
on-shell S-matrix depending on the parameter A too. Suppose the potential is altered by
changing A to A+4A. We may define the increments AV and AS of the potential and of
the S-matrix, respectively. These definitions are

Viearn = Vi+4V, (14a)
and
S}.+A}. = S1+AS (14b)



985

The problem considered here may be reduced to the one described in the previous
section. From Eq. (14a) we see that for this purpose it is sufficient to replace V,, 4V, S,,
Si+42 BY Vi, Va, So1s Sow Tespectively, in all the formulas to be used.

From Eq. (11) we now infer

Sivar=S1"Sa (15)

where the on-shell S-matrix S,; corresponds to 47 by means of Eq. (10b) and Eq. (4b).
Therefore, inserting Eq. (15) into Eq. (14b), we get a relation between 4S5 and 4V. Both
the increments 4S and 4V may be expanded as a Taylor series in 4A. Taking the first
terms only in these series (44 — 0) we finally obtain the equation

0 4 : c’c’’ c’’ v, c
Py} Si9E) = —2mi Z S5 (E) <’l’;.E+ 6_; l’hg . (16)

e’

This equation is the desired one, and expresses the change of the S-matrix caused by
the change of the potential.

We now give a special case of Eq. (16), mentioned above. Suppose the S-matrix to be
diagonal for all the values of the parameter 4 lying in an interval (4,, 4,). Using the para-
metrization (12), we obtain the following equation

d v,
=7 0B = —ndysi] = vl 17
holding in this special case.

4. Phase equations

As is well known, the so-called variable phase method represents a useful approach
to the problem of the potential scattering. Several papers and textbooks have been written
on this subject [4]. The usual treatment of the equations of this method is based on the
general connection between second-order linear differential equations and first order equa-
tions of the Riccati type.

We shall show here that there is a close connection between our formula (16) and the
method of a variable phase. First, we confine ourselves to the case of a local potential V.
We define a projector P, on the interior of a sphere ©, with the tadius A in the configuration
space. Further, we define the potential

Vi=V,=PV (18)

and insert it into Eq. (16). Differentiation of V, with respect to A transforms the ra-
dial matrix elements of the projector {riP,|r'> = 6(r—r’) 9(A—r) into delta function,
{r|,Plr'> = 8(r—r") 8(A—r). We see that only the surface values of the exact wave
function |[y5;> will be needed in the coordinate representation. Potential acting in the
region outside of the sphere Q, is equal to zero and the value of the wave function at the
distance A from the origin may be simply continued into the asymptotic region. At the
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same time, the asymptotic behaviour of the wave function may be expressed using the

V). oF
e i@ty may therefore be

on-shell S-matrix elements S5 °(E). Matrix elements (y5; |
calculated in terms of S5 °(E).

Let us analyze the situation in more detail. Let the particle of the mass u be scattered
by the central potential ¥(r). As is usual in such a case, we choose the following set of

free particle states

k
Gimy = \/ - ”( D ), (19)

that satisfy the relations (6). In the definition (19) (r, Q) are spherical coordinates of the
vector r and k = \/Qﬁ is an impulse of the particle. The spherical Bessel and Neumann
functions j, and n,, respectively, are defined in accordance with Ref. [4].

Wave functions {r|y4z> defined by the relation (8) are exact solutions of the problem
with the potential V,(r) = V,(r) 3(A—r) and in the region r > 1 they have the form

2 i3,1m(E)
vy = \/ Pl (jikr) cos 8(E) + ny(kr) sin 85"(E)) - Y, (). (20)

Since the on-shell S-matrix is diagonal in the quantum numbers /, m, it is possible to use
the equation (17) fo1 the calculation of the phase shifts 6"(E). Inserting the potential into
this equation and performing the radial integration in configuration space, we get

4'\

O(E) = —ni? V(A)§d9 s QR 21)
Inserting Eq. (20) into this integral we finally get the well-known phase equations
2u
— O8(E) = — — i/ (A) Lji(kA) cos 67 (E)+ ny(k4) sin $7(E)]?, (22)

that are valid in our special case.

The variable phase method refers not only to the phase shifts. In the more general
case (e. g. coupled channels, distorted waves etc.), this method is represented by a system
of the first order nonlinear differential equations, where all the on-shell S-matrix elements
are taken into account. The particular form of these equations depends entirely on the
particular choice in the S-matrix parametrization, dimension of the configuration space,
form of the potential, stc. Our method may be applied as well.

The equations (16) are used as a starting point. In all cases that allow to calculate

the matrix elements {5 (E)| lp5ey in terms of the functions S§°(E), Eq. (16) may

be looked upon as the general;zed phase equation. One of the possibilities for A chosen as
a radial cutoff in a configuration space, is given just by the definition (18) of the i-depen-
dent potential V,.
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