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SOME ASPECTS OF LARGE p; PHYSICS

By J. C. POLKINGHORNE

Department of Applied Mathematics and Theoretical Physics, University of Cambridge*
(Presented at the XVIII Cracow School of Theoretical Physics, Zakopane, May 26 — June 8, 1978)

An elementary survey is given of the application of the parton model to large pr
processes. Topics dealt with are: multiple scattering processes, logarithmic scale breaking,
the Drell-Yan process, hard scattering mechanisms, parton kt’s, critical phenomenological
questions, downstream calorimetric triggers. The emphasis throughout is on basic ideas and
techniques.

1. Introduction

In this brief course of lectures I cannot cover the whole range of large p; theory
and phenomenology. Instead what 1 shall try to do is to point to certain features which I
think are of special importance.

It will be very much one man’s view and I shall not aim for completeness of coverage
or referencing. I shall suppose that we are dealing with a hard scattering process like that
of Fig. 1. The basic interaction in which the large py is generated is the wide angle scattering

o

Fig. 1. A hard scattering process

of two constituents, one drawn from each incident hadron. The observed outgoing particle
is a'fragment of one of the products of this collision, or may be one of the products itself
in appropriate circumstances. Such a picture implies that the final state will consist of four
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approximately coplanar jets of particles: the two longitudinal jets corresponding to the
residual beam constituents and two sideways jets with balancing transverse momentum
corresponding to the fragmentation of the products of the hard scatter. I shall not summarize
again the well known evidence from correlation experiments which supports such a view [1].
The cross-section is found to take the scaling form

do 1 2p
E 5~ f(x1,0), xy= =2, (1.1)
d’p  py NE

for the production of a particle of transverse momentum py at an angle 6 in the centre
of mass of the primary collision. Calculating this cross-section will involve the probabilities
of finding constituents within hadrons, the probability of finding the observed hadron
within its parent constituent, and the cross-section for the hard scattering process. Only
the latter has dimensions so that the power of n in (1.1) is determined by the nature of
the hard scatter.

2. How to calculate

The first thing to do is to get some idea of how to calculate such a process. The basic
technique is simple. The momentum & of a constituent is expected to be approximately
parallel to that of its parent p. It is possible to choose a frame of reference in which we can
write the latter as

P = (35,0,0,15), Q2.1

neglecting masses at high energy s. Then a suitable representation of k is

k = <%x\/§+ \-/)f; K1s Kz,%x\/E)- 2.2)

Clearly this corresponds to k& carrying a fraction x of the large longitudinal momentum
of its parent, while y and x measure the deviations from exact parallelism. The form (2.2)
is chosen to ensure that

k? = xy—x? 2.3)

is finite for finite values of the parameters. It is an important assumption of parton theory [2]
that the significant regions of integration correspond to finite values of the virtual parton
masses k2; that is the parton amplitudes are taken to decrease rapidly when the k2 become
large (see also Section 4 below). Instead of integrating over the four components of k
we integrate over x, y, k:

d*k — ydxdyd®x. 249
Notice that (2.4) does not contain any power of /5.

Exactly similar parametrisation can be introduced for the other parton vectors k', /.
Of course their associated hadronic momenta p’ and ¢ have a different form from (2.1) in
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the overall centre of mass, chosen as the frame for p, but it is only necessary to make the
appropriate rotation of forms like (2.1) and (2.2) to deal with this. The essential point
is that none of these transformations will introduce powers of \/s.

3. The Landshoff process

We can put these ideas to immediate use by calculating a process first discussed by
Landshoff {3]. It pictures (for example) wide angle n-w scattering occurring in the way
illustrated by Fig. 2. The q and q from one pion each scatters off q or q from the other

Fig. 2. The Landshoff process for nr scattering

pion. The outgoing quarks are cleverly aligned so that they can recombine to form outgoing
pions. One might suppose that such a mechanism is fantastically improbable but in fact
it proves not to be so. The calculation goes as follows.

We approximately line up each k; with its p; using (2.1) and (2.2). By momentum
conservation the associated k; = p;—k; is then also in the same form. Section 2 teaches
us that this costs no powers of ./s. If the quark hard scatters are scale-free then their
matrix elements also contain no powers of /5. The only dependence on /s comes from
requiring momentum conservation for the hard scatters:

ki+ko—ky—ks =0, k,+ky—kj—ky =0. (3.1)

Since three of the components of the vectors of (3.1) are large (corresponding to the energy
and the momenta in the scattering plane) the d-functions enforcing the first equation of
(3.1) produce a net factor of (\/s)~*. The second equation then follows without further
cost from overall energy-momentum conservation. Thus the high energy behaviour of the
matrix element associated with Fig. 2 is s~3/2 so that the differential cross-section behaves
like

do™
dt

1
~ < f(cos ), s— oo, 0 fixed. 3.2
M

This is to be compared with the s—¢ behaviour expected from dimensional counting
arguments.
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For the physically more interesting case of proton-proton scattering the discussion
is similar. There are now three quark hard scatters and enforcing momentum conservation
for them costs (s~*?)? in the matrix element. Thus we expect

de®™ 1
—~ S—Bf(cos 9), (3.3)

dt
compared with the s~ of dimensional counting. The latter appears to be dominant at
moderately high energies and it is of the highest interest to see if (3.3) manifests itself as
the energy increases. In the fixed angle regime both invariants s and # are large. A detailed
calculation using spin 3 quarks interacting by vector gluon exchange shows that in the
moderate angle regime

m* <t <s, (3.9
(3.3) takes the form

do*? 1

o T G

a behaviour which appears consistent with ISR data [4].

4, Logarithmic modifications

The parton model as described so far gives exact Bjorken scaling in electroproduction.
In fact quantum field theories like QCD give logarithmic violations of scaling and experi-
mentally scale-breaking of at least qualitatively the right character seems to be observed.
It is possible to modify the parton model to take this into account [5].

{a) (b)

Fig. 3. The handbag diagram

A discussion of deep inelastic electroproduction starts with the celebrated ‘“handbag”
diagram of Fig. 3a. Large momentum has to be transferred through the diagram and
this is most economically done by carrying it across the “handle” of the bag, that is the
line joining the two current vertices. This produces an s~! behaviour multiplied by a coeffi-
cient which is proportional to the contribution of Fig. 3b. This vertex part is obtained
by contracting out the line which carried the large momentum. Such a result only gives
the true asymptotic behaviour if this vertex part integral is convergent. The original
covariant formulation of the parton model assumed sufficient damping of the parton
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amplitudes at large values of 4 to make this so. In renormalizable field theories such vertex
parts are divergent. If the integrals are logarithmically divergent it means that the true
asymptotic behaviour is enhanced by corresponding factors of logs. When moments of
the structure functions are calculated these logarithms exponentiate to give power-law
scale-breaking. The logarithmic scale-breaking of asymptotically free gauge theories
will be simulated by log log divergent vertex parts.

The sort of structure necessary to describe this is illustrated in Fig. 4a. The amplitude 4
contains all the sources of divergent integrals in Fig. 3b, and T'is a reduced amplitude free
from such divergences. This decomposition corresponds to the Operator Product Ex-

(a) (b

Fig. 4. The Asymptotically Free Parton Model Structure

pansion decomposition into singular functions (= A) and hadronic matrix elements of
operators (= T). A very simple model for 4 is shown in Fig. 4b. The broken lines represent
gluon exchange. If the gluons are point coupled and have a propagator

1

~ k* > o, (4.1

then they give logarithmic divergences in Fig. 3b. To get the log log divergences of
asymptotically free theory we must replace (4.1) by

1

Tk’ k* ~ oo. @2

The extra factor of (In £?)~* clearly simulates the effect of a running coupling constant in
asymptotically free theories. Equation (4.2) corresponds to the Asymptotically Free
Parton Model (AFPM) as originally formulated [5]. A simple ladder structure like Fig. 4b
is easy to calculate. It leads simply to the Drell-Yan conjecture that the structure function
for massive lepton pair production (F)is given by a convolution of quark (f) and anti-
quark (f) structure functions:

F=fx ]' “4.3)
However more realistic theories involving vector gluons have a much more complex

structure and the DY conjecture is correspondingly more difficult to discuss. Important
progress has been made recently by Stirling [6].
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Fig. 5 illustrates the sort of contributions to electroproduction and the DY process
that must be considered. There are three categories:

(i) Effects, represented by black blobs, associated with the infinite renormalisations
necessary for vertex (V) and propagators (P). At first sight these do not appear to match

(@)

Fig. 5. The Structure of electroproduction and Drell-Yan contributions in a theory with vector
gluons

in the way (4.3) would require, for Fig. 5a has 2V +P for f while Fig. 5b has 2V for F.
However the Ward identity for electromagnetic interactions implies that

V4P =0, 4.9)

so that in fact the correspondence is exact.

(ii) The ladders of exchanged gluons. Clearly they match diagrammatically in a way
that appears to agree with (4.3). The AFPM calculation [7] shows that this is indeed the
case.

(iii) The finite contributions from vertex gluons which loop about the current vertices.
The hard part of verifying the DY cohjecture lies here. Diagrammatically it is far from
obvious that they respect (4.3). In Fig. Sa they are attached to the parton propagator
joining the two current vertices. In Fig. 5b there is no such propagator, but instead
a photon propagator to which such gluon lines can not be attached but which they can
cross in various ways. Nevertheless Stirling has given a way of associating these contri-
butions to Fig. 5b with the convolution of contributions to Fig. 5a and verified to second
non-trivial order (two-gluon exchange) that it indeed works. For a description of his
prescription the reader should refer to the original paper [6]. However I would like to
underline one essential ingredient in the analysis.

This is the idea of independent scaling sets in the extraction of the high energy behaviour
of Feynman integrals. The basic notion is simple. The dominant behaviour always comes
from where the coefficient of the large variable (s) is small. Suppose, for example, that
this is

o0y, 4.5)
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with the o’s constrained by
oy +a, = 1. (4.6)

Then the asymptotic behaviour comes from either «; = 0 or «, = 0, but of course (4.6)
prevents both vanishing simultaneously. There are thus two independent contributions
to the asymptotic behaviour which can be labelled by «, or «, and which must be added
together. These are the two independent scaling sets in this simple case. More elaborate
examples are discussed in Chapter 3 of reference 8.

The integrals associated with Fig. 5b contain many such independent scaling sets. The
identification of the contributions to different terms in the convolution (4.3) is shown
by Stirling to depend upon separating these sets according to the lines finally scaled over.
If these all lie on one side of the photon line the contribution corresponds to one in which
the vertex gluon structure is associated wholly with one of the f’s while the other f corres-
ponds to a simple propagator joining the current vertices. If the lines of the final scaling
lie on both sides of the photon line then the vertex gluon lines are shared between the
two f’s according to rules stated by Stirling.

5. Large pr mechanisms

Current data suggest that (1.1) holds in the regime investigated with n = 8. Two
groups of hard scattering mechanisms have been considered as possible source of
interaction:

(i) Natural mechanisms

q+9->M+M (quark fusion), g+M—->q+M (CIM), q+q—(qq)+ M (diquark), (5.1)

In each of these processes M denotes a hadronic system with meson quantum numbers (qq)
but which only exceptionally is expected to materialise as a single meson or resonance.
The mechanisms (5.1) are called natural because dimensional counting ideas applied to
them give n = 8 in (1.1)

(ii) Fundamental mechanisms

q+q9—>q+q, q+g—q+g gtg—gt+e. (5.2)

g denotes a gluon and it is understood that the analogous processes with antiquarks are
also included. The mechanisms (5.2) are termed fundamental for obvious reasons.

Dimensional counting applied to (5.2) would give (1.1) with » = 4 in flagrant disagree-
ment with experiment. However these are various effects which could modify the dimen-
sional counting prediction in the presently observed regime. They are:

(i) Scale breaking in the quark distribution and fragmentation functions. Although
at truly asymptotic energies this is only a logarithmic effect it can be important for current
phenomenology.

(i) Scattering by the mechanism of gluon exchange must take account of the running
coupling constant «(Q?) ~ (In @%)~!. Again this asymptotically logarithmic effect can
have sizable consequence in a subasymptotic regime.
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(iti) The partons themselves possess transverse momentum. If the two initial state
partons are in a configuration that lines up their kg in the direction of the observed large p;
final state hadron then less of that hadron’s p; his to be generated by the hard scatter
itself. Since the cross section for the latter decreases steeply with p; generated a significant
enhancement of the overall cross-section occurs in this favoured configuration. Of course
against this must be set a diminished cross-section for unfavoured configurations in which
the parton ky’s line up in the wrong direction, but it turns out that a net enhancement
results from this kg effect. Naturally the enhancement becomes less significant as the
observed py becomes large compared with the available parton k;. Thus an enhancement
decreasing with py is produced which has the effect of steepening the p; dependence of
the observed inclusive cross-section, that is increasing the effective value of n.

Field [9] has estimated that a combination of these effects (i) to (fii) can enable the
fundamental mechanisms to explain present data. However he needs to choose a very
large value for the parton kv,

k) ~ 850 MeV/e. (5.3)

The results obtained depend on the details of the k; distributions — exponential or power
law or what? (Theory suggests power law as the most likely). Big contributions then come
from the tails of the k distributions for which the central “hard scatter” is in fact rather low
energy and soft. In that circumstance a further uncertainty attaches to what form the cen-
tral scattering cross-section should be like in this soft regime. It will contain asymptotically
factors of s~! and ¢~! which certainly can not be extrapolated to small values of s and ¢!

6. Parton ki’s

The subject of parton ky’s deserves further consideration. It is reasonable to ask if
there is supporting evidence for so large an effect as (5.3). The parton k;’s produce the
average py of ptp~ pairs created by the Drell-Yan process of quark-antiquark fusion.
They also manifest themselves in the average {(p,,> of away side particles, where p,,,
is the momentum component perpendicular to the plane defined by the incident beams
and the trigger particle. In both these effects values are observed which appear consistent
with (5.3).

A more subtle effect is associated with the residual longitudinally moving fragments of
the incident hadrons. These have to recoil in the away side direction to compensate for
the trigger-side kr of the interacting partons. This affects the observed distribution of
moderate py particles in the away-side hemisphere and this must be taken into account
in calculating such distributions.

On a more fundamental level one can distinguish two sources of parton kg, corres-
ponding to the two parts of Fig. 4a. T will give a bounded, but possibly numerically signifi-
cant, contribution. This is sometimes called the “primordial” term. The QCD processes
in A, on the other hand, will give a contribution to <{k;> which, to within logarithmic
factors, must grow like \/ Q2. This is because there is no other scale than ¢? in QCD, or
alternatively, because the log log divergent integrals over k¢ which give the scale breaking



1033

effects become linearly divergent when one calculates {(k%) and are thus proportional
to Q%. Theoretical attempts to calculate the dependence of (k1> on x, the longitudinal
fraction of the parton, have been many and varied but no universally agreed form has
emerged. The fact that the general picture described in this paragraph seems to accord
quite well with data will be discussed in detail in Professor Yan’s lectures.

7. Aspects of large py phenomenology

Detailed reviews of large py phenomenology are available [1] and. the paper of Chase
and Stirling [10] gives a good comparative discussion of the various mechanisms (5.1)
and (5.2). In this brief section we draw attention to some points that seem to be of particular
interest.

(a) dN/dy. The distribution of away side particles opposite to trigger is principally
controlled by the form of the hard scattering cross-section. Analysis [11] of the observed
rather flat distributions in rapidity y indicate cross-sections behaving like

do 1

ar s’
which is exactly what would result from the spin 1 exchange of the natural mecha-
nisms (5.1).

(b) {z), where

(7.1)

(z) = Duisser (1.2)
<pjet>

The average fraction of the trigger side p; taken by the trigger particle appears to be
{(z) 2 0.9 [12]. It is very important to know this quantity as accurately as possible since
it provides an important clue to the nature of the outgoing large p; system. So large
a value of (z) is difficult to reconcile with a quark fragmenting into a pion, even if the
fragmentation function is assumed to go to a constant as z — 1, rather than vanishing
like (1—z). (In principle this behaviour can be checked in ete~ annihilation). However
for the natural mechanisms it is always possible for M to materialise as a single pion.
Even if this happens only at the percent level it easily gives a value of (z) ~ 0.9. This is
because of trigger bias. When one triggers on a large p; particle the (presumably rare)
fragmentation modes in which z is close to or equal to 1 are greatly enhanced in effect.
This is because the steeply falling hard-scattering cross-sections make them the most
economic way of producing large py trigger. (It is easier to get a 3 GeV/c 1t by a rare mode
in which an outgoing system of 3} GeV/c (say) decays into 3 GeV/c+4 GeV/c rather than
by a common mode in which 6 GeV/c outgoing systems decays into 3 GeV/c+3 GeV/c.)
Hence large z fragmentation modes dominate.

An important consequence of trigger bias is that calorimetric detectors, which are
free from bias and just trigger on the total p; in the outgoing jet, are expected to find
cross-sections enhanced by two orders of magnitude over the case of a single particle trigger,
since they count all the fragmentation modes equally. Experiments at FNAL have shown
that this is indeed the case. .
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(c) Beam ratios. The QF and CIM mechanisms are much more effective with pion
beams than proton beams since the former contains q’s or M’s more readily. The experi-
mental ratios do not show such a striking effect. DQ does not suffer from the same prob-
lem. However too much of it can not be present without spoiling the nt/n~ production
ratio for proton beams; see the discussion of Chase and Stirling [10]. This is the prin-
cipal phenomenological difficulty for the natural mechanisms.

(d) Gluons and photons. The addition of gluons to the fundamental mechanism (5.2)
is helpful in fitting the low x data (the gluons are, of course, expected to be rather low x
partons in hadrons, being associated with the “sea” rather than *“‘valence” distributions).
In the outgoing state the substitution

gy (7.3)

will produce processes which can account for the production of the 2 10% level direct
large pr photons which appears to be observed at the ISR. For the natural mechanisms

M-y (7.4

will play a similar role [13]. There is however an important distinction between the two
processes (7.3) and (7.4). In (7.3) an elementary g is replaced by an elementary y; in (7.4)
a composite M is replaced by an elementary y. Thus for (7.3) the y/r ratio is p; independent
but for (7.4) it increases with p like p2. It clearly would be of the highest interest to deter-
mine how the y/n ratio behaves experimentally.

The rather large y/n ratios (~10%) obtained from calculations based on (7.3) or
(7.4) are due to the absence of fragmentation effects for a photon. Thus the fine structure
constant a should be multiplied into the hadronic jef cross-section to get an order of magni-
tude estimate for y production.

(¢) Baryons. Baryons are copiously produced at large p; but their cross section
corresponds to (1.1) with n = 12 rather than 8. This fact in itself is significant for it clearly
indicates that these must be a variety of underlying mechanisms operating in large p;
hadronic production. Possible mechanisms for baryon production are

qg+B - q+B, (1.5)

which according to dimensional counting include has » = 12, and a multiple scattering
mechanism [14] analogous to the Landshoff mechanism for exclusive scattering. The latter
gives n = 14.

Escobar {15] has recently discussed these mechanisms in-relation to data. He concludes
that in the presently accessible regime (7.5) is dominant in the leading particle mode (that
is with the initial B the incident proton itself rather than a baryonic constituent) and that
the final B must be interpreted as a baryonic jet, just as M is interpreted as a mesonic jet.
It is important to note that in the leading particle mode (7.5) gives a narrowly peaked
away-side distribution, since the integration over incident longitudinal function x, which
produces the “fan”-like dN/dy for meson mechanisms, is in this case absent for B.
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The multiple scattering mechanism may be important for explaining why large p;
cross-sections on nuclei manifest on A-dependence greater than A!. It is known that
conventional final state interactions, which would give such an A-dependence, cancel
out in the cancelation of cross-sections for hard scattering processes.

8. Downstream calorimeter triggers

In a normal longitudinal event a downstream calorimeter in the direction of one of
the beams will receive energy E' = 3./s deposited in it. Ochs and Stodolsky [16] pointed
out that a significant deviation of the energy deposit E from this value £’ would be a signal
that some sizeable transverse component has been generated in the interaction. Clearly
such a trigger is freeer from bias about the nature of the p;-generating interaction than
is a transverse calorimeter which looks for a jet in a particular direction.

Ochs and Stodolsky (OS) went on to introduce an important scaling law. Define

t = 2E//s. (8.1)

Transverse events correspond to 7 significantly different from 1. In fact v can be either
greater or less than 1 but it will be convenient in this simple discussion to concentrate on
the case © < 1. According to a hard scattering picture the deficit (1 —1) has been caused
by a constituent carrying fraction (1—1t) of its parent’s energy being scattered outside
the calorimeter (whose half-angle acceptances is taken to be «). If this scattering is scale-free
OS found the cross-section took the form

do 1 f(l—7)

dt s 1—1

G, &=(1-1)tan*La (8.2)

In (8.2) the factor s—'arises from obvious dimensional considerations, and f{1—7) is the
probability of finding the parton with longitudinal fraction (1—1) in the beam hadron.
The interesting term is G. Instead of being a function of the dimensionless variables 7
and o separately, according to OS it depends upon them only in the combination given
by &.

Landshoff and I [17] have verified (8.2) in a parton model calculation and given
the expression for G in terms of an integral of the hard scattering cross-section and con-
stituent function associated with the second beam particle. We have also considered (8.2)
in the limit = small, corresponding to finding energy deposit E = E,. If

=)~ 1", -0, (8.3)
and we take m = 3 for a proton beam, one finds
do ~3p3

—— ~ § °E 8.4

dE, s 0 8.4

or calculating the cross-section for energy deposit E < E,,

o(Ey) ~ s Eg. 8.5
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There is a multiple scattering mechanism which could also contribute with

d
Dt =3p145(z), (8.6)
dt

with M a fixed parameter determined by quark masses and the proton’s wavefunction.
It will give a contribution similar to (8.5)

amult(EO) ~ s M* (8'7)
I our paper we make various estimates of these processes. For details see reference [17].

I am most grateful to Professor A. Bialas and his colleagues for generous hospitality
at the Zakopane Summer School.
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