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1. Questions

Amongst the important questions one would like to answer are the following:
— Why are fractionally charged quarks not observed?
— Why does the color group SU(3) play such a special role?
Indeed, in the standard model [1], it is, together with the electric charge, the only exact
symmetry.
— Why have leptons integer and quarks fractional charge?

The usual answer to the first question is confinement. This is achieved either by phenom-
enological bag models [2} or by invoking infrared slavery [3]. In both cases the answer is
dynamical. But maybe one should look in a completely different direction. If one compares
for example classical mechanics and quantum mechanics, one finds that the dynamics is the
same, since the Hamiltonian, by the correspondence principle, is chosen to be the same.
What changes is kinematics, i. e. the interpretation of states and observables. Passing from
commuting to non commuting observables entails such profound changes as the uncertainty
relations of Heisenberg or the quantization of energy. In usual quantum mechanics, states
are described by vectors in a complex Hilbert space. The idea of Giinaydin and Girsey [4]
was to generalize complex numbers to octonions (or Cayley numbers). In this way, they got
two categories of states: usual ones with complex coefficients, which they identified with
leptons, and new ones, with octonionic components, corresponding to quarks. Because of
the non-associativity of octonionic multiplication, quark states would lack certain prop-
erties essential for observable particles. Furthermore, there arises naturally, from the prop-
erties of the octonion algebra, a group SU(3) under which complex numbers transform like
singlets and the octonionic components as triplets and antitriplets. The consistency of the
interpretation requires this group to be exactly conserved. The algebraic structure of this
new mechanics suggests the use of exceptional groups for unifying symmetries of weak,
electromagnetic and strong interactions. In such schemes [5] the charge of the electron is
three times the charge of the down quark.
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2. Beginnings

Use of octonions in quantum mechanics was first suggested in 1932 by Jordan [6].
This attempt was not pursued, but gave rise to an extensive mathematical literature on the
so-called Jordan algebra [7, 8]. We shall review this work in the following.

After the sixties, octonions made their appearance in physics again. Pais, Gamba and
others tried to relate the octonions to various internal symmetry schemes in elementary
particle physics [9]. Goldstine, Horwitz and Biedenharn studied a Clifford algebra made
of octonionic multiplication operators [10]. As mentioned above, octonionic quantum
mechanics was proposed again in Ref. [4]. A critical assessment of this work has been
presented by Kosinski and Rembielinski [11]. Symmetry schemes based .on exceptional
groups are presented in Ref. [5]. It is clear that most of these attempts are still speculative,
since it cannot be claimed yet that a complete and consistent octonionic mechanics exists.
A preliminary question has been answered affirmatively by Giinaydin, Piron and Ruegg:
Can one construct an octonionic quantum mechanics which satisfies all axioms of usual
one-particle quantum mechanics [12]. However, in our opinion, the important problem
of multiparticle states has not yet been solved (see also Ref. [11]. Finally, a further general-
ization has been proposed by Giirsey [13].

3. Octonions and Jordan matrices

A general, real, octonion O can be written

7
0 = r0e0+ Z rAeA, (3.1)

A=1

where rq, r, are real numbers, e, the real unit, and e, seven imaginary, anticommuting
units:

&&= —1, eseptege,=0, A#B (3.2
or, in general:

esep = —O,p+ XC:fABcec’ (3.3)

where £, zc are completely antisymmetric symbols with f1,3 = fo46 = f 435 = f367 = Sos1
= fs72 = f714 = 1. The multiplication is non associative, for example
(e1€2)es # ei(ezes).

One can define the associator
(04, 0, 03) = (0,0,)05—-04(0,05). (B4

The octonion algebra is alternative, which means that the associator is completely anti-
symmetric, and therefore equal to zero if two factors are equal. Conjugation is defined by

0 = roeo—rAeA (3.5)
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and the norm by
n(0) = 00. (3.6)
Octonions share with real, complex and quaternion numbers the property that
n(0,0,) = n(0)n(0,). 3.7

The automorphism group of the octonion algebra is defined in the following way: consider
the linear transformations on the imaginary units

.
ey = le S 4s€s (3.8)

(e ep) = e eq’. 3.9

Then S belongs to the seven-dimensional fundamental representation of the fourteen
parameter simple exceptional Lie group G2 [8].

The property of interest for us is that the subgroup which leaves one of the imaginary
units (say e,) invariant, is SU(3). The representation 7 reduces like:

T=1@3®3* (3.10)

Jordan matrices [6] are hermitean 3 x 3 matrices over octonions:

o; O; 52
s=lo, « o, (3.11)
02 61 Oy

where o; are real numbers and Q; octonions. These matrices form a non associative algebra
under the product

JIOJZ =’%(JIJ2+J2J1). (3.12)
This is called the exceptional Jordan algebra J3. It satisfies the Jordan identity
(J1oJp)edi=J o0 d}). (3.13)

Jordan, von Neumann and Wigner [7] found that this last equation could be fulfilled only
by two kinds of algebras: special Jordan algebras which are matrices over associative
division rings and the exceptional Jordan algebra J5.

It was discovered by mathematicians [8] that the automorphism group of J3 is the
exceptional, 52 parameter simple Lie group F4. It acts on the 26 traceless, hermitean
Jordan matrices, leaving the unit matrix 7 invariant. It has two invariants

(s, J2) = tr (Jy o Jo), (3.19)
[J1, 2y J3] = tr ((Jy 0 J2) o J3), (3.15)
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where the Freudenthal product [14]
Jixdy=JioJy—5dte Jy—Ldtr Jy+ 3 (r Jytrd,—tr Jy 0 T) (3.16)

defines the completely symmetric trilinear form (3.15).

4. Complex Hilbert space and its octonionic generalization

In usual quantum mechanics over complex Hilbert space s a physical state is given
by the ray

cleded#, Jel=1, ce®. 4.1
It obeys the superposition principle
0, 1f> e = cilod+cyip) e H. 4.2)
Probabilities are determined by the scalar product:
My = apl?,  Calo) = BB = 1. (4.3)
Orthogonal states satisfy
{aifd> = 0= (afc|f) = 0. (44
A change of basis is given by

oy = (; i8> B led = Z‘ 18> ({Blod) = %Cylﬁ) (4-5)

If now, in (4.1), we replace the complex number ¢ by the octonion O, then certain properties
are lost. For example, (4.4) is not always true:

{a|B> = 0 does not imply <2[(O!>) = 0. (4.6)

Also, because of non-associativity, (4.5) is not always fulfilled. From this it follows that the
Hilbert space formulation of quantum mechanics breaks down. One can try several ways
out. Here we describe the formulation of Giinaydin and Giirsey [4], leaving for Section 6
the work of Giinaydin, Piron and Ruegg [12].

The general octonion (3.1) can also be written, using (3.3),

3 3
0 = (roeg+rie)+ Y (ri+ricses)e = colen)+ Y, cer)e 4.7
i=1 i=1
¢o and ¢; are complex numbers over the imaginary unit e;. We now consider the direct

sum of four complex Hilbert spaces [10], [11], where the wave-functions have respectively
the components ¢, and c;e;. The scalar product is the complex number [15]

(01, 0M)c = g Ve + 3 cfef®,  ci(er) = co(—eq),  cf(er) = c(—e7).  (4.8)
13
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This scalar product is invariant under the group U(4), whose intersection with the auto-
morphism G2 is again SU(3), the subgroup which leaves e, invariant. If we identify e,
with the usual i/ of quantum mechanics, it is clear that SU(3) has to be exactly conserved.

The four complex Hilbert spaces are related to each other by octonionic multiplication.
This can also be implemented by 4 x 4 matrices, which, together with the SU(3) operations,
form again the group U(4). Hence, the “octonionic space” is just the sum of four complex
spaces with additional algebraic structure. Giinaydin and Giirsey identify one-particle
wave-functions having components ¢, with leptons, and those having components ce;
with quarks and c]e; with anti-quarks. The nice feature is that one can define quark-
-antiquark and three quark wave-functions which are complex numbers, and could be
identified with ordinary hadrons [15]. First define

0"+ 0® = L [(0'V0)e, —0(0Pey)], (4.9)
0. 0 = 1[(0'P0P)e, +0(0Pe)]. (4.10)
Then
(ciVe) o (cf%e) = —ciVc{Vey, (4.11)
(C?)e‘) ° [(C?’ej) * (Cia)ek)] = "—sijkc?)c(jnc;ca)' (4.12)

(4.11) and (4.12) no longer contain the “quark”™ imaginary units ¢;, and are related to
Clebsch-Gordon products

I@3*->1, 3®3®3-1.

However, it seems doubtful that they can be identified with quantum mechanical tensor
products {10, 11].

5. Jordan algebraic formulation of quantum mechanics and projective geometry

Instead of representing a physical state (4.1) by a ray c|«), it is equivalent to use a pro-
jection operator

P, = |a) (a| = P2 = cla) <aje*, trP, =trla) {a] = {aja) = I. 5.1
The hermiticity property as well as the algebraic definition of P,
P:=rp, (5.2)
is preserved by the Jordan product (3.12)
A B = }(AB+BA). (5.3)
Probability (4.3) is given by
My =tr P o Py, 54

My = tr ey <alB> Bl = KalBdI®. (5.5)
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Jordan [6] noticed that all observable quantities such as probabilities and expectation
values can be expressed in terms of anticommutators (5.3) of operators. The algebra of
all observables is a Jordan algebra satisfying (3.13). Of course, if one limits one-seif to
operators over complex numbers, i.e. to special Jordan algebras, one gets a formulation
which is equivalent to complex Hilbert space quantum mechanics, as exemplified by
(5.1) and (5.5).

However, one may get something new if one chooses the exceptional Jordan algebra
(3.11), keeping only the algebraic definitions (5.2) and (5.4). The discussion of paragraph 4
shows that there is no underlying Hilbert space if full use of the octonion algebra is made,
which is the case in the definition (5.4), P, belonging to (3.11). Then arises the question
of the validity of the axioms of quantum mechanics in this case. This was not systematically
done by Jordan. Clearly, before trying to find an answer, one has to formulate the quantum
axioms in a language which does not make use of Hilbert space. Such a language was
found by Birkhoff and von Neumann [16], who used proposition calculus and projective
geometry. This approach was further elaborated in Ref. {17]. Its relation to the Jordan
algebraic method is discussed in Ref. [18].

Given an (n+1) dimensional vector space H (n > 2) over an associative division
ring K one can give it the structure of a projective space of dimension n by associating
with every ray la > g of H a point represented by the projection operator

P, = |adqq<al = ja)<{a|, qq =1 geKk. (5.6)

Then the subspace spanned by two orthogonal vectors |«) and |8) will be associated to
the line P,+ P, passing through P, and Pg. Similarly, one will get a projective plane from
three orthogonal vectors, and so on. A linear superposition of the vectors |[¢) and |f)
will correspond to a point on the line joining the points P, and Py;. The superposition
principle of quantum mechanics just means that all points on this line correspond to
physical states, if P, and P, are physical states. »

Finally, Birkhoff and von Neumann remarked that projection operators have only
eigenvalues 1 and 0, which corresponds to yes-no experiments (propositions). Any “com-

plete” experiment can be decomposed in such yes-no experiments. So they were able to
show the equivalence of the algebra of projection operators, the associated projective
geometry and the quantum mechanical properties of yes-no experiments. The theorem of
interest to us is that any projective geometry of dimension » > 2 satisfies Desargue’s
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theorem and can be represented by a n+ 1 dimensional vector space over an associative
division ring K. Desargue’s theorem states that the points S, S, and S, lie on a straight
line:

On the other hand, Moufang [19] gave an example of a projective plane (n = 2)
coordinatized by octonions which does not satisfy Desargue’s theorem. Jordan [20]
gave without proof an algebraic construction equivalent to the Moufang plane. This was
independently rediscovered by Freudenthal and studied in great detail by him and Springer
[21] (see also Jacobson [7)]).

Giinaydin, Piron and Ruegg [12] showed by elementary means that the axioms of
one-particle quantum mechanics are satisfied by the Jordan construction [20]. In particular,
they showed that
a) The axioms of the projective plane are satisfied and there exist non Desarguean con-

figurations.
b) The plane is orthocomplemented.
¢) One can define a unique probability function satisfying Gleason’s axioms [22].
d) One recovers the usual quantum theory of measurements.
These results will now be summarized in the following section.

6. The Moufang plane

Jordan [20] showed that the most general one-dimensional projection operator belong-
ing to the exceptional Jordan algebra JS is

a aa ab ac
P=|b|@se)={ba 5 bc|, 6.1)
¢ ca ¢b cc

where a, b, ¢ are octonions, one of them being real, and satisfy
tt P = aa+bb+cc = 1. 6.2)
Using the alternativity property of the associator (3.4)

(aa)b = a(ab), (aa)b = a(ab), (6.3)
from which follows the Moufang identity
a(bc)a = (ab)(ca) 6.4)
one finds
P2 =Pp (6.5
P has the property that the Freudenthal product (3.16) vanishes:
PxP =0, (6.6)
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One can form a two-dimensional projection operator / with the Freudenthal product of
two one-dimensional projectors P, and P,:

P, xP
l,=1—- —2""2 (6.7)
tr Pyx P,

G,=1l trl,=2, (6.8)
where 7 is the 3x 3 unit matrix, with the important property

Pi°’12=Pi9 i=1,2. (6.9)
Indeed, from the symmetry of (3.15), it follows:

tr(PyxPy)o P, =tr (P, xP))oP,, tr{I-DoP; =0 (6.10)
One can prove the lemma
trPoQ=0<P-0=0 6.11)

for one-dimensional projection operators P and Q. This shows that (6.10) implies (6.9).
We are now in a position to give the Jordan construction of the projective Moufang
plane:
-—— points are represented by one-dimensional projectors P,
— lines are represented by two-dimensional projectors /,
— the plane is represented by the unit matrix 7.
A point P is on a line [ if and only if

Pol=P. (6.12)

This shows that (6.7) is the line passing through the points P, and P,. The intersection
of the two lines /-P, and I~P, is the point P

P, xP,

= 6.13
tr Py x P, ©.13)

In order to proceed, we need the exceptional group F4. Indeed, this is the automor-
phism group of the Jordan algebra, with the two invariants (3.14) and (3.15). It is also an
automorphism group for the Freudenthal product. Hence, it is an automorphism group
for the Jordan construction of the projective plane: points are transformed into points,
lines into lines, and the relation Po/ = P into P'ol' = P’. This allows to simplify the
one-dimensional projection operator P (6.1). Let us define

1 00 0 00 0 00
E, ={0 0 0}, E; 01 0}, E;=[{0 0 0O} (6.14)
0 060 000 0 0 1

Then the following lemmas can be proved [12].
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Lemma 1: There exists always a transformation belonging to F4 which brings P given
by (6.1) into the form E,.
Lemma 2: Given P,, P,, Py such that P, o P, = P, o Py = P30 P; = 0, then there
exists always a transformation of F4 which brings them to the form E,, E,, E,.
Lemma 3: Given any two P; and P,, then there exists always a transformation of F4
which brings them simultaneously into a real form.
Lemma 4: tr P, o P, = 0 implies P, o P, = 0.
Lemma 5: Given two different P, and P,, then P, satisfies Pyo P, = Pyo P, = 0 if
and only if P; is a multiple of P, x P,.

Finally, we have a more general
Lemma 6: Any element of J3 can be brought to diagonal form by an F4 transforma-
tion.

With the aid of these lemmas one can show that the Jordan construction satisfies
the axioms of the projective plane:
1) Any two distinct points are contained in one and only one line.
2) The intersection of any two distinct lines is one point.
3) There exists four points no three of which are in the same line.

Explicit examples of non Desarguean configurations can be given [12].

7. Orthocomplementation of the Moufang plane and compatible measurements

In usual Hilbert space quantum mechanics, given a vector v there exists uniquely
a subspace ¢ orthogonal to v such that the union of ¢ and v is the whole space. ¢ is called
the orthocomplement of v, and denoted v'. More generally, it is clear that if &, < ¢,, than
¢) o &5, and that (¢) = ¢. This concept is necessary for notions such as: eigenvectors
belonging to different eigenvalues are orthogonal, projection operators on orthogonal
spaces commute, i. e. are compatible, etc.

In the projective geometry language we consider linear varieties L (points, lines,
etc.) and require for the orthocomplement L’ of L:

(LY =L, L,DL,=L,CL,. (7.1)

Birkhoff asked the question: Can one orthocomplement a non Desarguean geometry?
[23). The answer for the Moufang plane is yes. Define orthogonality by

P'.LP2¢>P1°P2=O; (?-2)
Then the orthocomplement is defined by
P =1-P, I'=1I-1l (7.3)

Clearly, if P is a point, P’ is a line, and if / is a line, I’ is a point. Furthermore, P is not
on the line P’ (Po P’ = 0 # P). The second implication (7.1) is also valid: if P is on
the line /, ' is on the line P’. Indeed, Po/ = P’ implies

Pol'=(=P)o(I-I) = I-P—I+P = I. (7.4)
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If P, is orthogonal to P,, then
P, x P, = {(I-P—P,)
and the line /,, through P, and P, is
liz = Py+P,. (7.5)
The orthocomplement of 7, is
P3=I"’112=I-‘P1—P2. (7.6)
Hence the plane contains three orthogonal points. Lemma 2 shows that they can be brought
to the form E,, E,, E; (see Eq. (6.14)). '
Finally, we discuss the important concept of compatible proposition, using the defini-
tion of Ref. [17}. L, and L, are compatible if, for example, L, CL,, orif L, o L, = 0.

More generally, L, ban be written as the sum of two orthogonal projectors P; and P,,
P, being on L, and P, orthogonal to L,

Ly =P,+P,, PyoLy=P,, PyoL,=0. 7.7

Consider two lines /; and /, (tr [; = 2). Then, because of lemma 2, we can always
transform [, to the form

1 00
L=10 1 0] (7.8)
0 00
The most general solution of (7.7) is then
aa ab 0
I, =|ba bb O (7.9
0 0 1

!, and ], commute.

8. The probability function, measurements and observables

Suppose the system is in the state given by the one-dimensional projector P and
we want to measure the proposition L (point or line). Then the probability is given by the
unique function:

Wy(L) = tr (P L). 3.1

Satisfying Gleason’s axioms [22]
0 We(l) <1, 8.2)
2) We(P) = 1, (8.3)

3) We(Ly U L) = We(L)+Wp(Ly), Ly L L. (84)
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(8.4) means that the probability of the union of two othogonal projectors is just the sum.
The proof of (8.2) to (8.4) requires again the lemmas. The proof of the uniqueness is based
on the fact that the Moufang plane contains a real projective subgeometry, the orthogonal-
ity condition P; o P, = 0 (Jordan product) being equivalent to PP, = 0 (ordinary
product). It was also shown in Ref. [12] that the result of successive, compatible measure-
ments is independent of the order of the measurements, in spite of the non-associativity
of octonion multiplications.

We now come to the question of observables. First, each projection operator defines
an observable. In general, in the Moufang plane, an observable is defined by three one-
-dimensional projections. They can always be brought by an F4-transformation to the
form E,, E, and F; (lemma 2). The question arises if any Jordan matrix can be written
as a linear superposition of three mutually orthogonal one-dimensional projection oper-
ators and interpreted as an observable. The answer is yes, since any element of J$ can be
diagonalized by an F4-transformation (lemma 6). In order to get a Schrodinger equation,
we need a time evolution operator. This should transform orthogonal states into orthog-
onal states and hence belong to the automorphism group of the orthocomplemented
Moufang plane, which is F4. Some generator in the Lie algebra of F4 will play the role of
the Hamiltonian.

The subalgebra of complex Jordan matrices can be used to construct a Desarguean
projective subgeometry of the Moufang geometry. The corresponding quantum mechanics
can be realized in a tree-dimensional Hilbert space. The subgroup of F4 which leaves the
complex subgeometry invariant is SU(3)°. Jordan matrices whose elements comprise the
six remaining octonionic units transform as 3 and 3 under SU(3)°. More precisely, under
the maximal subgroup SU(3)° ®SU(3) the representation 26 of F4 reduces as

26 = (3%, 3)@®(3", I)P(L°, 8). (8.5)

Hence, it is tempting to identify SU(3)° with the color group, complex Jordan matrices
with lepton states, and the other with quark and antiquark states [24] (note that a projection
operator belongs to the reducible representation 27 = 26 @ 1). Since a non-Desarguean
projective plane cannot be embedded in a irreducible projective geometry of higher dimen-
sions, this would mean that quarks have no space properties, these latter requiring an
infinite dimensional geometry. On the other hand, the lepton subgeometry can hopefully
be embedded in a consistent way in such an infinite geometry. However, the definition
of a consistent tensor product of quark states is still an open problem.

9. Discussion

We now have two different models of octonionic quantum mechanics. The first (Ref. [4,
10, 11]) is a direct sum of four complex Hilbert spaces, linked by octonionic multiplication.
The second (Ref. [12], see also Ref. [13]) seems to us more genuinly octonionic. It allows
only three degrees of freedom, and this may be linked to the non observability of quarks.
In both cases, there exists a privileged, exactly conserved SU(3) group, and a natural
division of states into a lepton and a quark sector.
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10. Exceptional groups and symmetry schemes

We have seen that the exceptional groups G2 and F4 are the automorphism groups
of the octonion, respectively the exceptional Jordan algebra. Furthermore, F4 is the
automorphism group of the quantum mechanics defined by the Moufang plane. Therefore,
one may ask what symmetry schemes arise from these groups. Of course, this makes only
sense if the problem of the tensor product has been solved. Giirsey [13] has even gone
further and speculated on the relation between the exceptional group E6 and E7 and
quadratic Jordan algebras. The relation with quantum mechanics is, however, obscure
so far. One can of course also consider exceptional groups in the context of conventional,
complex valued, gauge field theory [5]. The aim is to find a spontaneously broken sym-
metry group for weak, electromagnetic and strong interactions.

All five exceptional groups have a maximal subgroup containing SU(3) as a factor,
the other factor being a candidate for the flavor group, which should at least contain SU(2)
® U 1).

G2 o SU@), F4o5 SUB)® SUB), E6 > SUB) ® SUB) @ SU),
E7 > SUQ3) ® SU(6), E8 > SUQ3) ® E6. (10.1)

Obviously, G2 is too small. Under (10.1), the fundamental representation decomposes
in the following way:

G2:7 =3@3®1, F4:26 = (3% 3)®3°, 3)@U°, 8),
E6:27 = (353, D®(B% 1, 3)®(%3,3), E7:56 = (35 6)®@3°, 6)®(1°, 20),
E8 :248 = (8%, N@(1°, 78)@®(3%, 27)®(3", 27). (10.2)

The fundamental representation should accomodate the elementary Fermions, including
quarks and leptons. E8 contains a color octet of Fermions, which is not wanted so far.

The adjoint representation, where one would like to put the vector Bosons, decom-
poses as

G2:14 = §°@3°@3°, F4:52 = (8°, N®(1°, 8)D(3°, 6)@®(3°, 6),
E6:78 = (8%, 1, H@(1% 8, DO, 1, 8)D(3°, 3, 3)@(3", 3, 3),
E7:133 = (85 1) ® (1% 35 & (3% 15) @ (3%, 15)
E8: 248 = (8°, 1)@ (1°, 78)@(3, 2N D", 27). (10.3)

E8 has the amusing feature that the vector Bosons belong to the fundamental representa-
tion, which could be interesting for supersymmetries.

Limiting ourselves to F4, E6 and E7, we see that the fundamental representation
contains 3 or 6 quarks, 8, 9 or 20 leptons. The adjoint representation contains vector Bosons
which couple quarks and leptons. In order to avoid the decay of the proton into leptons,
one has to break the symmetry and give a very high mass to these Bosons (10'® GeV!).
This, in turn, will renormalize the coupling constants, after the symmetry has been further
broken down to SU3)* ® U(1) [25].
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The representations of F4 and E7 are real (or pseudoreal), which leads naturally to
vector-like theories [26]. Present experimental data on neutrino scattering put severe
limits on the coupling to right handed protons. On the other hand, in E6 27 # 27, so
that one could have a 27-plet of left-handed particles. The predictions [5] for the Wein-
berg angle is 3/4 for E7 and F4, 3/8 for E6. Renormalization effects discussed above could
bring this down to 0.5, respectively 0.25. Again, E6 is rather favoured by experiment.

The Higgs structure for breaking the symmetry is very complicated for E7 [27], whereas
it could be much simpler for E6 [28]. The particle structure of the E6 model is the follow-
ing: one left-handed 27-plet with u, d, b quarks, u, d, b antiquarks, four charged leptons
(e*, t*) and five neutral leptons. Another 27-plet would contain s, ¢ and v’ quarks, p*
and some new leptons. A Higgs particle belonging to 78 would give a very high mass to
the Bosons in (3%, 3, 3), (3%, 3, 3) and the strange Bosons in (1°, 8, 1) and (1°, 1, 8), breaking
E6 down to SU(3) ® SU(2) ® U(l) ® SU2) ® U(1). Two or more Higgs particles
in 27 leave only SU(3)° ® U(l) as exact symmetries. One general feature of this breaking
is that the neutrino can have zero mass only if at least one quark and one charged lepton
in the same 27-plet have zero mass [29]. One also finds that the t-neutrino has about
the same mass as the 7, unless the 1 life-time is two orders of magnitude different from the
simple V~ A calculation.
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