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Two-dimensional QCD is studied as a model for the possible effects of confinement
on the predictions of the naive parton model which is based on the free propagation of quark-
-partons. We find that in processes involving large momentum transfers the naive parton
model scaling laws are generally true even though quarks cannot be treated as propagating
freely. The universality of quark fragmentation does not extend, however, to hadron-hadron
scattering at small momentum transfers. Confinement strongly influences the probability of
finding a ““wee” quark in a hadron and this leads to a number of interesting consequences

1. Introduction

The quark-parton model [1] has come to play a central role in our thinking about
processes involving hadrons. Originally the parton model was introduced to provide
a physical picture for processes controlled by the behaviour of hadronic matter at very
short distances: namely, the total cross-sections for ete~ annihilation into hadrons
(y* = X) and for deep inelastic scattering (y*h — X). Although only for these processes
can the parton model be rigorously derived from the short-distance behaviour of field
theory, it has since been applied to many other processes with phenomenological success.

The basic idea of the naive parton model used in its many applications is that the
basic interaction responsible for a given process takes place between elementary partons
and the effects of the binding of partons into physical hadrons can be entirely expressed
through phenomenological parton distribution functions. Thus, for example, the single-
-particle inclusive cross-section for deep inelastic scattering (y*h — h’X) is described by the
simple parton model diagram shown in Fig. 1. In the appropriate kinematic region (see
Section 3.2), the cross-section is given in terms of the probabilities for finding parton
a in hadron h and hadron h’ in parton a and the pointlike electron-parton cross-section.
While the large momentum transfer subprocess of electron-parton scattering is involved
and thus hadronic matter is probed at short distances as in the case of the total deep inelas-
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tic cross-section, long-distance effects can also play an important role: the final state
hadron h’ emerges after the long-range confining force has acted between parton a and
the remaining constituents of h. In many of the other applications of the parton model
which are not rigorously derivable from the short-distance behaviour of field theory

Fig. 1. Naive parton mode! diagram for y*h —» h’X

(e. g., the single-particle inclusive ete~ annihilation cross-section (y* — hX), large mass
lepton-pair production in hadron collisions (hh’' — y*X), and large transverse momentum
processes in hadron-hadron collisions) the situation is similar: although a large momentum
transfer subprocess is involved, in principle long-distance effects can be important. Parton
model ideas have also been applied to hadron-hadron collisions involving no large mo-
mentum transfers; for example, to relate Regge behaviour to the probability of finding
a “wee”” parton in a hadron [1] and to make models for inclusive single-particle spectra [2].

Given the fruitfulness of the naive parton model it now seems like a good time to refine
and extend our understanding of its predictions and its range of application. One can
envision corrections to the naive parton model arising from both the extremes of (i) large

Fig. 2. Parton model diagram for y*h — h’X indicating short- and long-distance effects

momentum transfer (short-distance) effects and (ii) small momentum transfer (long-
-distance) effects. Since it now seems a good possibility that hadrons are described by
quantum chromodynamics (QCD) which is a theory which is dnly asymptoticaily free,
the naive parton model scaling laws must be corrected for large momentum transfer effects.
On the other hand, since partons (quarks and gluons) appear to be confined inside hadrons,
their interactions at long distances are very strong and the naive pérton model may require
modifications or limitations of its domain of applicability due to long-distance effects
as we have already alluded to in the preceding paragraph. These two types of effects are
indicated schematically in the modified form of Fig. 1 for y*h — h’X shown in Fig. 2. The
modifications at short distances due to asymptotic freedom are indicated by the emission
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of gluons which degrade the momenta of the quarks. The effects of long distances and
confinement are indicated by the large shaded region from which the hadron h’ emerges.

The treatment of the short distance modifications of the parton model has been the
subject of considerable interest recently and will be discussed by other lecturers {3]. I will
discuss the other extreme — the possible effects of long-distance phenomena and especially
quark confinement on the naive quark-parton model. It seems to be a common assumption
that the short- and long-distance modifications of the parton model can be treated sepa-
rately and combined together at the end, although there is as yet certainly no proof of this
and, at least to me, it is by no means obvious. However, it is useful, even necessary, with
our present limited level of understanding to adopt this assumption.

Since as yet the mechanism of confinement in.QCD in the real world of four space-
-time dimensions is poorly understood, I will discuss QCD in one space and one time
dimension (QCD,) as a model for quark confinement [4]. This model has both the “short”
distance (“hard”) properties which motivated the naive parton model and the long-distance
(“soft™) properties which are characteristic of composite-Reggeized hadrons. It is thus
an ideal model (indeed it is the only model known to possess both standard hard and
soft physics) in which to study the relationship between confinement and the parton
model. Although the mechanism of confinement is entirely different than in QCD in four
dimensions, we may hope that the qualitative consequences of confinement are rather
similar. Indeed 1 believe the reader will find it rather plausible that the general conclusions
we draw are general features of confinement.

In Section 2, I review some salient features of QCD,. For a more detailed discussion
the reader is referred to the lectures of Ellis [5]. I will endeavour, however, to keep the
presentation self-contained and where possible illustrate points with simple low order
perturbation theory calculations. Some comments on gauge invariance in QCD, are
relegated to an Appendix. In Section 3, I first discuss how the processes rigorously
dominated by short distances are realized in QCD,, i. e., verify that the physical final
state hadrons give the same cross-sections “as if” free quarks were produced. Then I
discuss other processes to which the parton model has been traditionally applied and
compare the results in QCD, with the naive parton model. Finally, in Section 4, I summarize
the results of Section 3 and discuss the lessons about the validity of the naive parton
model that one is tempted to draw from these results.

2. Review of two-dimensional QCD

From an examination of the standard QCD Lagrangian one sees that the gluon
coupling constant g has dimensions [g] = L~* in two dimensions. Thus the colour Coulomb
potential between two quarks ([ oc g%r"] = L) must grow linearly with distance (n = 1)
and is therefore confining. In addition the theory is super-renormalizable and in the deep
Euclidean region (p* — —o0) the lowest order graphs dominate since higher order graphs
behave like (g2/p?)". This guarantees the validity of the exact scaling laws of the naive
parton model for spacelike momenta for the short-distance dominated processes. The
model is thus quickly seen to have the two features in which we are interested.
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Since the gluon field has no transverse components, it has no independent degrees of
freedom in two dimensions. Therefore, we cannot study two-dimensional analogues of
processes associated with gluons (gluonium) or gluon jets. In fact, the absence of gluon
emission is related to the existence of exact scaling in QCD, as opposed to the logarithmic
violations characteristic of asymptotic freedom. Indeed gluon exchange in two dimensions
is analogous to an “effective” confining potential in four dimensions rather than to the
gluon state. The interest in QCD, is not so much in the fact that it is the two-dimensional
version of most people’s favourite theory in four dimensions but instead in the fact that
it has the properties of confinement and scaling.

2.1. The 1/N, expansion

An expansion in 1/N, with g2/, fixed has very interesting properties in a confining
theory with SU(N,) colour symmetry [6, 7]. The leading order term has zero-width reso-
nances and is analogous to the dual resonance model while higher order terms generate the
dual loop expansion. It thus displays prominantly the spectrum of confined quarks in

a very simple way.
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Fig. 3. Colour factors in QCD

We recall briefly the basic idea of the 1/N, expansion [7]. The colour content of a
quark propagator is represented by a single line which indicates the propagation of any
one of the N, colours. The colour content of a gluon propagator is represented by two
lines which correspond to the propagation of one of the N? states. (Actually the colour
singlet contribution should be removed leaving N2~ 1 states. This gives higher order cor-



1055

rections in 1/N, and will not concern us here.) Some examples of Feynman graphs and cor-
responding colour factors are shown in Fig. 3. Note that each closed colour loop gives
a factor N,. One finds in general the leading order term in 1/N, for given external lines
consists of all planar graphs with no extra fermion loops. Higher order contributions
have a more complicated topology of gluon lines (1/N? for each additional handle — see
Figs. 3b and 3f) or additional fermion loops (I/N, for each loop — see Fig. 3c). Note
that if there is resonance in the qq channel in leading order 1/N, (lowest order graphs
shown in Figs. 3d and 3e) then its coupling to qq is of order 1/\/N, (Fig. 3g). Consequently
the three-meson vertex is of order 1/./ N, (Fig. 3h) and the resonance width vanishes like
1/N.. If the theory confines the only states in the qq channel are zero width resonances
in leading order 1/N,. Thus if the amplitudes satisfy unsubtracted dispersion relations
in leading order 1/N, they give a dual resonance model. The 1/N, expansion plays an
important practical role in QCD,. The leading order term can be obtained and studied
relatively easily. Indeed we shall focus our attention on the leading term here. In principle
higher order contributions can be constructed from it by an expansion equivalent to the
dual loop expansion in dual models.

The 1/N,_ expansion emphasizes strongly resonance physics. According to Veneziano
[7], as N, is decreased a multiperipheral picture becomes more and more appropriate. Since
N, is in fact not too large, perhaps resonance dominance is not the most appropriate pic-
ture phenomenologically. This must be borne in mind in interpreting the results of our cal-
culations. A related problem is that the 1/N, expansion, like perturbative expansions in
a coupling comstant, has the property that unitarity is not satisfied if the leading terms
are taken for each amplitude. Thus the right-hand side of the unitarity equation Im 4 = |42
has an explicit N, dependence which is of higher order than the left-hand side. This means,
for example, that there are difficulties in interpreting phenomenologically expressions for
inclusive cross-sections (see Refs. [27] and [31] below). We shall not discuss these issues
further here.

2.2. The light-cone gauge

’t Hooft [4] originally suggested studying QCD, in the light-cone gauge and since
then all studies of physical processes in QCD, have been based on this starting point.
The first advantage of the light-cone gauge, e. g.,

1
2
or indeed any axial gauge, is that there are no ghosts and all triple and quadruple gluon

vertices vanish since [4,, 4,] which occurs in G,, vanishes. Furthermore if light-cone
variables, e. g.,

A. = —(dy—A4) =0 2.1)

L 1

+ = \/2
are used in the loop integrals, the k.. integrals can be done easily leading to simple x_
ordered perturbation theory expressions.

(kotky), (2.2)
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In the light-cone gauge (2.1) the Green’s function for the gluon field satisfies
024, = 6% (x)
and thus
Ap(x4, x2) = 8(x2) [& x sl +Bx, +C]. 2.3)

The C term reflects a further gauge freedom and can be suppressed [8] while the B term

corresponds to a constant background electric field which is irrelevant for amplitudes
i _ . e
= — = iS¢ (k)
m2-ie F

2k-

————— = P A

————— :-ig
i
|
[

vy . for each quark line

Fig. 4. Simplified Feynman rules for QCD,. The subscript a on the quark mass /m, specifies the flavour
involving colour singlets [9]. To obtain the Fourier transform of the linearly growing
potential ‘x,| we need to cut it off somehow at large “distances”. A natural cut-off is

A, > o(x_) L ix jemotxl (2.4)

which gives for the gluon propagator

i i { 1
Py = — + -—5.) . 2.5
kx 2 ((k- +ie)*  (k_ ~is)2> (29)
Note that the ¢ here has nothing to do with specifying the boundary conditions for incoming
or outgoing waves but is instead required by the strong long-distance singularity in (2.3).
In two dimensions, the gamma-matrix algebra is very simple and one arrives at the

simplified Feynman rules shown in Fig. 4. To avoid confusion with the photon and empha-
size the potential nature of the gluon from now on we indicate it by a dotted line.

2.3. Bound states

We start our study of QCD, by investigating the bound states in the qq channel.
We consider the qq 7 matrix which consists of graphs of the form of Figs 3d and 3e
with quark self-mass insertions (Fig. 3a). The self-mass contributions are easily taken care
of. Only the graph of Fig. 3a and its iterations give non-vanishing contributions and
these lead simply to a renormalization of the quark mass

m? - m? = ml—m?, (2.6)

where
m? = g?N /n. 2.7
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The T matrix thus satisfies the integral equation shown in Fig. 5

. 2 2 a b
. , —ig 2 d*k Sg(k)Sg(k—p) ,
iT(q,q'; p) = = —8& N, T(k,q'; p)s (2.8)
(g-—q-)° @2n)?*  (k-—q-)?
c.qgirzq a3, 3 a—a “( q
= N it
b ]
ey a-p b b )_A

Fig. 5. Equation for qq T matrix

where T is the coefficient of y_ for each of the upper and lower quark lines. If there
is abound state at p? = m?, then the meson qq vertex satisfies the equation shown in
Fig. 6

ig’N,
(2n)°

- a2k _
rq; p) = f TR SH(k)Se(k— p)I(k; ). 2.9

Fig. 6. Equation for I',(q’, p)

We define equal “time” (x. = 0) wave function

- i _ ~
(x) = " j dq.e* " SHa)S¥a—p)(q; P)ix- =0s (2.10)

where x = ¢g_/p_. Performing the integral yields

o 1 ab
n(X) = = ~3 ~73 7(x), (2.11)
2 12 my
m; — -
1—x

where
ab L s
r,q;p) = —TI,(%)
p-
Substituting (2.11) into (2.9) gives 't Hooft’s equation {4] for the bound states

H@(x) = m2g(x), (2.12)
where '

H = HY+V, (2.13)
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and
- 1
~2 2 ~
m; m d
?)b = + __b— s i” = —mZPJ _-‘)’)"‘-2 .
1 x-y

0

(2.14)

If Eq. (2.12) is divided by 2p_ it is recognizable as an equation for the total “energy” p.
of the bound state (p, is conjugate to the “time” x_). H, gives the on-mass-shell value of
the kinetic energy of the quarks

: 1 2q-q.
= —— =44

2p. x  2p_ q-[p-

1 m

and V is just the Fourier transform of the potential energy m?|x..| due to gluon exchange.
Generally, performing loop integrals over (+) components leads to expressions like those
of old-fashioned perturbation theory where the denominators are differences of (+) com-
ponents of momenta of on-mass-shell particles. For example, the equation corresponding
to Fig. 6 can be written down by inspection:

1
r,=v r, 2.15
m?—H, (2.15)

which is equivalent to (2.12). Note that the action of H is only defined on functions which
vanish at x = 0 and x = | so we must restrict our consideration to such functions.

It has been demonstrated that the discrete spectrum of the ’t Hooft equation extends
to arbitrarily high masses and forms a complete set of states [10]. There are therefore no qq
thresholds in the qq channel and hence the quarks are confined as we expected.

In our study of high-energy processes we will need some properties of the wave func-
tions ¢, for large m?. A WKB approximation for ¢, for large n is suggested by thinking
of the momentum fraction x [= ¢q.(1/p-)] as a co-ordinate. The conjugate variable is the
separation between the quarks which we call p [= (x,, — X, 4+ ¥p-)]. The classical Hamil-
tonian corresponding to Eq. (2.13) is then [11, 12]

1
— Hy = {pl+ U(x), (2.16)
m

where

1 [m2/m*  mi/m?
U(x) = —[ / + o/ ]
n x 1—x

This looks like a photon moving in a potential U(x). The standard WKB procedure is
to calculate the action using the classical orbits

S(x) = | |pldx = [ [E—U(x)]dx, .17
where E = 2p.p._/am® and obtain the WKB wave function

d(x) = AetS™ (2.18)
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The quantization condition is
§|pidx = 2nn+B, (2.19)

where B is related to the phase shift at the classical turning points.

The difficult part of the problem is the analysis of the behaviour near the turning
points. For @,(x) ~ exp (& innx) which follows from (2.18) and (2.19) one sees that U~ |p|
atx ~ 1/nand 1 —x ~ 1/n. Thus for large n the turning points are very near the singularities
of the potential U. This makes the full solution particularly difficult. However, by evaluating

my = £ $a(x) [Hu(x)]dx

tinx

using @,(x) o< e we see that

(M2 ~ *m*n+(m2 +md) In n+C*, (2.20)

where the term proportional to » arises from ¥V and the term proportional to In n from H.
Hence we have

8%(x) = Aexp [i 7?:;7 J[m: —H?;"(x')]dx'] @21)

which determines ¢, to within a constant phase.
To determine the constants in Egs. (2.20) and (2.21) we need to study the regions
x= I/n and 1—x = 1/n. If we write

2

m
_¢ (2.22)

"
I

m

then for finite ¢, x ~ 1/n and ’t Hooft’s equation goes over into the scaling form [8]:

2 C
2 = =P | dp —— , 2.23
#© = T - 5@ f 1o (2.23)

3

!
¢

0

where

2
#(¢) = lim ¢:‘;( - )

2
nrc mn

If we require that (2.21) goes over into a scaling form ¢*(¢) for x =~ 1/n and @°(&) for
I—x= 1/n we find to O(1/n) {11, 13]

(my?)* ~ w*m’n+(m3 +m3) In n+ C(Z) + C(my),

¢:f;(x) ~ 2sin .[nnx+6f,i’-(x)],

- 1
$*() ~ /2sin [’; ¢+ 53(5)] (¢ large), (2.24)
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where
76%%(x) = —m3(In xn—x ln n)+m3(In (1 —x)n—(1 —x) In n)— C(m2) (1 — x) + C(m?)x

(2.25)
and
>2

6(E) = — ::‘; mf; —C(md).

Furthermore a detailed study [11] of (2.23) gives as explicit expression for C(m?) and
the following result which we will see plays a crucial role below:

o

CdE m2 o\ x
j — @& = (—2 +1) Jd€¢“(é) = (2.26)
4 m \/mz
0 0 +1

a
m2

Finally we note that the behaviour of ¢ at x = 0,1 is easily obtained by trying a power
behaviour [4]

B(x) ~ CPxP (x - 0) (2.27)
and one finds
my
B, cot nf, = — —s (2.28)
m

Note 8, - 0 as m, - 0 and B, —» 1 as m, —» . The wave functions have the *‘parity”
property

$2(x) = (=1} —x). (2.29)
2.4. Some general properties of light-cone gauge amplitudes

Amplitudes calculated in the light-cone gauge according to the prescription of Section
2.2 are functions of the invariants and ratios of the (—) momentum components (i.e.,
x variables). Hence they are manifestly invariant under proper Lorentz transformations
(actually there is only one transformation, a boost in the | direction). Parity invariance
is not obvious, however. No non-trivial check of parity invariance has yet been made.
Parity invariance is clearly equivalent to gauge invariance under the change of gauge
A. =0 - A, = 0. We shall return to the question of gauge invariance in the Appendix.

As is often the case when one uses a non-covariant gauge, individual Feynman graphs
have singularities which are not present in the sum of all graphs- contributing to
a physical (gauge invariant) amplitude. This can be simply illustrated by considering the
quark form factor in order g2 (Fig. 7) [14]. We have

O N a*k’ (—ig) i i ( i
M- = 1y. ———a 1 — I,
7-Ne Jomy? T8 mi—ic m? —iz \(k_—Kk_)?

k' k', — —
+ 2K (k' —q4) 2k —q.)
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where we have restricted ourselves to the (- ) component for simplicity. The quark masses
are the bare masses, self-energy insertions simply take the bare masses to the renormalized
masses in the lowest order graph (which is actually independent of m?).

k a

k-q > b

Fig. 7. Quark form factor in order g2
As usual the k. integral is performed easily giving (x = k_/q.)

I =y r® g x,

where
1
1
rog, x) = v — —w?p f i — L
2= Ho(x) =X, ml_ m
0
x 1-x
m? d
with
1
2 , 1 x'(1-x")
I(q°, x) = P | dx' - - - . (2.31)
X —x (xX'=r ) —-r.)
The roots
m2  mi \/( m?2 m%)-J
re =31+ —5 - —F+ AL 5, = (2.32)
* z[ ¢ & ¢’ ¢

are the two (k, S 0) on-mass shell values of x. The integral in (2.31) is straightforward
to peiform

x(1—x)

1—x
In
(x—ry)(x-r.)

re(l—ry) 1—ry

2 = —_
e x) = Gora)(re—rl) =14

P

ro(l1—-r.) i Ler_

T W) (o=t =

(2.33)

For ¢%2 < 0, r, and r_ are not in [0,1] and the arguments of the final two logarithms are
positive. For ¢2 > (m, +m)?>+i¢, the arguments are negative and

n[(1-ry)/—ri] > In[(1-r)/r ]Fin.
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The mass shell singularities at x = r, are present in Eq. (2.33) (and thus also Eq. (2.30))
only for g* > (m,+m,)* where the physical production of a qq pair can take place. The
apparent singularities in the real part of (2.33) cancel as expected since the singularity
arises from a pinch of the singularities in Eq. (2.31) at x’ = x and x’ = r, which can only
take place for x and r. in [0,1]. The mass shell singularities are double polesin I' in order g2.
When all orders are summed the infinities conspire to give a vanishing of I' on the mass
shell [8]. They are therefore perturbative manifestations of confinement. Note, however,
that I does not vanish (or; in perturbation theory, blow up) on the mass shell for ¢g> < 0
(x = ry > L or x = r_ < 0) corresponding to the process quark + current — quark. This
means that if we are in a sector containing a quark, nothing prevents it from interacting.
To avoid the production of quarks in physical processes involving only colour singlets
we need the vanishing of I' on-shell only for g> above threshold. Although this requirement
is weaker than the vanishing on-mass-shell for all g2 which is the confinement signal often
discussed, it is sufficient to assure confinement in physical processes.

The singularities at x = 0,1 in Eq. (2.33) are new features of QCD,. They have
important (and peculiar) consequences. The logarithmic divergence of I'® as x - 0

(or x - 1),
2

m
re o ?:ln Ix], (2.34)

is a perturbative manifestation of the behaviour (2.27) of the wave function ¢(x). We
note that ¢(x) is analogous to

1
T FoH.® Ir(x),
(see Eq. (2.11)) and hence
2
H(x) > — ?f%% ~x(MO4+r® 4 ) ~ x<1— %m x+ > (2.35)
— 4o a

which agrees with (2.27) since m? — 0 as g2 — 0 and thus

x'finite x50

Fig. 8. Development of “wee” partons through many iterations of the confining potential

The behaviour ¢(x) ~ x is the usual behaviour given by the “spectator rule” [15] for
a hadron composed of two constituents in non-confining models. We see that in QCD,
the probability of finding a “wee” parton in a hadron is enhanced compared to the usual
behaviour in a superrenormalizable theory due to the singular nature of the confining
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potential. “Wee” partons can be produced through many soft exchanges (see Fig. 8).
This enhanced probability is responsible for Regge behaviour in QCD,, asymptotie
behaviour of form factors differing from the dimensional counting results [15] and somc
important features of ee~ annihilation cross-section (y* — hX). These consequences
will be explored below. We now turn to an apparently “peculiar” consequence of these
singularities.

Since the singularities at x = 0,1 arise from the collision of the singularities of
P(1/(x—x")*) with the end-points of integration they lead to the non-analytic behaviour
in x of In (1 —x)/x,. Thus the amplitudes for x in {0,1] and x outside [0,1] are not related
by analytic continuation. For k% > 0 and (g— k)% > 0, x in [0,1] corresponds to the process
(current — q,q,) while x > | corresponds to (q,-current — q,) and x < 0 to q,+cur-
rent — (). Thus the first of these processes is not related to the other two by (analytic
continuation due to the singularities at x = 0,1 arising from the confining potential (2.4).
Such behaviour is not without precedent in models of confinement [16].

The quark form factor for off-mass-shell quarks is not a gauge invariant amplitude.
If we consider a gauge invariant amplitude we may hope to find better analytic prop-
erties. On-mass-shell quark amplitudes would seem to be likely candidates. However,
we have seen that these do not generally exist in a confining theory. Amplitudes involving
colourless (but perhaps flavourful) currents are physical and thus might be expected
to have normal analyticity properties. However, because of confinement, singularities
are worse than those normally encountered, so analyticity should be checked carefully!
(Amplitudes with external mesons can be obtained by extracting the residues of the
poles at m?2.)

For example, the three-current amplitude in order g2 is the sum of the three Feynman
graphs shown in Fig.9. For each individual graph the processes with g7 < 0 and g? above
threshold are not related by analytic continuation due to the behaviour of the quark form

9;

ql Q3

Fig. 9. Three-current amplitude in order g2

factor discussed above. However, for the sum of all three graphs these processes are indeed
related by analytic continuation [14] as is normally expected. It should be emphasized that
if not all three currents are colour singlets, the graphs in Fig. 9 occur with different weights
and normal analyticity is lost.

These results can be generalized to the sum of all graphs in leading order 1/N,. We
have explicitly verified [14] that the three-current and four-current amplitudes for crossed
processes are related by analytic continuation. Meson amplitudes therefore have the same
property. Furthermore, assuming parity invariance, we have shown that the only singulari-
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ties are poles due to the bound states of Eq. (2.12). The amplitudes thus have the properties
expected in leading order 1/N, {7].

We therefore believe that physical colour-singlet amplitudes in QCD, have all the
usual properties required of scattering amplitudes and thus QCD, is an acceptable model
for hadrons.

2.5. “Soft” hadronic processes in QCD,

We conclude this section by recalling some of the features of purely hadronic processes
in QCD, [17, 18]. The meson-meson scattering amplitude has a behaviour at high
energies characteristic of Regge pole exchange in four dimensions. The amplitude for the
process shown in Fig. 10 has the behaviour as s » o©

A" ~ R Ry (—s) Fombe, (2.36)
Note that the power of s is non-integral and depends only on the exchanged quarks (a, d).

Furthermore the coefficient factorizes into a part depending on the upper two mesons and
a part depending on the lower two mesons. These features are reminiscent of a factorizable

t

1 - r
S—»)Q dC
L

Fig. 10. Quark line diagram for meson-meson scattering

Regge exchange in the ¢ channel. Since we are restricted to forward scattering in two-
-dimensions, we cannot look for the characteristic ¢ dependence of the power of s. Equation
(2.34b) thus does not represent true Regge behaviour but only an “embryonic” Regge
behaviour with

%,3(0) = —f,— B (2.37)
The Regge behaviour (2.36) has the parton model interpretation of reflecting the

exchange of “wee” partons advocated by Feynman [1]. Suppose we are in the centre-of-
-mass frame with meson 1 moving to the left so \/2p;- ~ \/s and /2p,- ~ m}/\/s. Then

R "‘\., P,
kia d
] ) b\“pz

Fig. 11. Perturbation theory analogue to meson-meson scattering

the decreasing power behaviour s ™% in (2.36) can be seen to arise from the small amplitude
(=~ x*) for finding a “wee” quark in the “fast” meson 1 which can annihilate one of the
necessarily slow quarks in meson 2 (i.e., k,_ = p,_ = (m%/s)p,- yielding x = k,_[pi- ~ m3/s).

This parton interpretation of (2.36) can be illustrated simply in perturbation theory.
As analogues of the external mesons we consider the (—) components of vector currents
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[19]. The analogue of Fig. 10 in lowest order perturbation theory is then the simple box
graph shown in Fig. L1. Using the Feynman rules of Fig. 4, we easily obtain

disc, A . [k ! 2 ‘o‘(k + me
ISC - = LN -, — —_ i c _——
: Ne } Gryt m mz | TP T G )
ki— ‘o T
2% 2k
2ri6 | k e\ (2.38
X — ZI0 - — e .
i + = P2+ 2k—py)- )
4N (py ) (p2-)° [ d : ! ( me e ) (2.39)
x AN, (py-)* | dx - —ofs= ™o , ,
' J T pi—HE() pi-HY(x) x  l-x

where x is defined as above. The two factors in brackets can be interpreted as the wave
functions of the initial and final meson 1 in zeroth order perturbation theory (see Eq. (2.35)).
Since the  function requires x ~ m/s (or 1—x =~ mZ/s) we see the amplitude has the be-

~

haviour s~* which arises from the small probability for finding a slow quark in the fast
meson:

1
ImA = [¢(x)]"}x~ 1~

S

In higher orders of perturbation theory the wave function is modified as in Eq. (2.35) and
the amplitude is larger (4 ~ s™%7%¢) due to the enhanced probability of finding a “wee”
quark discussed in. Section 2.4,

As we have emphasized above the mechanism for producing “wee” quarks in QCD,
seems to be particular to confinement. “Wee” partons arise through many iterations of
the confining potential and not through the usual multiperipheral mechanism which
involves the gradual degradation of parton momentum through successive virtual decays
[20]. Therefore in a confining theory the origin of Regge exchange may be quite different
from in conventional non-confining theories from which multiperipheral models arose [21].

It is quite amusing that, even for “soft” hadronic processes where short-distance
arguments are inapplicable, QCD, has a simple parton model interpretation. The above
discussion can in fact be generalized to multi-particle processes. Factorizable multi-*“Regge”
behaviour obtains [17, 22] and can be interpreted in terms of a generalization of Feynman’s
parton picture.

3. The parton mode!l and two-dimensional QCD
3.1. The parton model and short-distance processes

We begin by discussing how the parton model results for light-cone dominated proces-
ses are realized in the physical region, i.e, how it is that the quarks behave “as if”’ they
are free even though they are confined in meson bound states. We start with the simplest
process: the ete~ annihilation total cross-section [8, 11, 23].
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For ¢?> = —oo, the deep Euclidean region, we can be certain that the lowest order
graph (Fig. 12) dominates since QCD, is super-renormalizable and higher order graphs
therefore behave like (g%/¢?)". For clarity we have allowed the two quarks to have different
flavours a and b since the same analysis applies to a flavour changing current. Considering
the (—) component of a vector current for simplicity we have

1

2N, 1
A__ = —q_q. dx 5 o 3.0
n ,  my mg
0 q - -
X 1—-x
k
"
A
€ab q-k

Fig. 12. Dominant graph for e*e~ annihilation total cross-section as g* - —

where x = k_/g_. Using the analogue of (2.32) we have

1

2
_q_ €N, 1-
PR ELER de x(1-x)
q n x=ry)(x—r.)
_q_ é4N, mZ +m?
o, =l [1+ % n(—g)+ ] (3.2)
¢ q

Note that it is, of course, the unrenormalized quark mass which occurs in all the above
expressions.

What we are really interested in is the imaginary part of A_.. for g> - +o0. Equation
(3.2) appears to have such an imaginary part if we naively continue it to ¢> - + o0

2 2
m;+m
ImA__ ~q_q_eN, —*5—=. (3.3)
q
However, this corresponds to the propagation of free quarks:
2 2
m m
X=r_n~-— oOf x=r+~1——23 3.4
q q

and certainly is not strictly correct since the quarks are confined. How can we then obtain
information on the physical region from (3.2)?

We expect (3.2) to be a good approximation as long as we stay away from the positive
— g¢? axis where non-perturbative confinement effects are important and give rise to bound
states. Thus (3.2) should hold along rays in the complex —g? plane. Consideration of
a ray at a small angle to the positive axis suggests that (3.2) should represent the behaviour
in the physical region in some average sense [24, 25]. To make this precise {25] consider
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the contour C in the complex — g2 plane shown in Fig. 13. Along the large circles we ex-

pect (3.2) to be a good approximation. Applying Cauchy’s theorem to 4 = (¢%/q-q_)A_ -
we have

in 2n n2
0= | Q3®id0A— | Q}e®id0A—2ni ¥ Respop: 4, (3.5)
Q 0 n=n;
where the sum arises from the parts of the contour near the real axis. Carrying out the
integrals gives

1 1 4-49- 2, 2
- — Res o4 ~ e N (mg+my) 3.6
m? (ny,—n,;+1) a2 =mn? ¢ " ( ) (3.6)

n=n;

for Q3 = Q% » m?, which simply states that the parton model result gives the average
over the actual bound state poles [26].

\ "1/ ‘12

Fig. 13. Contour used in Eq. (3.5)

The above result is based only on general principles (deep Euclidean behaviour and
analyticity) so it should hold in QCD,. Let us see how this happens. Each bound state
in g2 at g2 = m? gives a delta-function contribution to Im A_ _. If we average such a contri-
bution over the spacing n2m? between bound states we have [8]

1
1 eZ,

Vy2 Nc ab :
ImA--=q.q- — () =4-4- 3 deqs., <x)] : 3.7
V]

m2

To verify (3.6) we need to calculate the integral of the wave function. For large n, ¢,
oscillates rapidly (Eq. (2.24)) (see Fig. 14) leading to a cancellation between the positive
and negative excursions. Only near the end-points will there be an imperfect cancellation.
So we can write (Egs. (2.22), (2.23) and (2.29))

1 0 e

_ 2
f dx (%)~ — [ J dEGHE) +(~1)" f d¢¢"<¢)].
(4] 0

m,
0
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Then from Eq. (2.26) we have

1
b 1 [m, » My
dx@,'(x) ~ —|— +(=1)"—|. (3.8)
TR M m
0]
Substituting (3.8) into (3.7) and neglecting the cross terms proportional to (—1)" which
average to zero verifies Eq. (3.6).
We have therefore verified {11] that the ete— annihilation cross-section which is given
exactly by Eq. (3.7) can be computed on the average using the parton model as if the

N

s

AN
W

AW
R
\

.

WA

N

1

Fig. 14. ¢35(x) for large n. The shaded region dominates in Eq. (3.8)

quarks were free, i.e., Eq. (3.3). It is amusing to note [8] that the rapid oscillation of the
bound state wave functions means the important values of the quark momenta are
x & 1/m? and 1 —x &~ 1/m? which are near the mass-shell values (3.4). This is the assump-
tion usually made in the naive parton model.

We now turn to deep inelastic scattering [8, 11]. According to light-cone dominance we
expect the cross-section to be given by the imaginary part of the parton model “handbag”

(a) (b)
Fig. 15. Deep inelastic scattering: (a) “handbag” graph; (b) actual dominant graph

diagram shown in Fig. 15a. (There will be another term where the current strikes quark b
but this is treated identically.) Quarks a and b have their renormalized propagators, ex-
plicitly indicated here, but ¢ does not.

We will first see how the “handbag” result arises in perturbation theory [27]. As we
have seen in Section 2.4, the qualitative features of confinement already manifest themselves
in O(g?) since a single gluon exchange already gives a long-range force. We consider
deep inelastic scattering off the (—) component of a vector current [19] of mass p®. To
zeroth order in g2 the amplitude is the same as that studied in Section 2.5 (Fig. 11 and Eq.
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(2.38)). The Bjorken scaling limit can be obtained by taking ¢, — oo while holding fixed [8]

xg = —q_[p-. (3.9)
Using the standard Breit frame (see Eq. (3.33) below), for example, it is easy to see this
is identical to the conventional xg = —g?/2p - ¢ in the scaling limit. The mass-shell

constraints now give

m?2
ko~ —q_+ '*S'—(P—‘*“J—)

and thus [19]

© 4zzmzefc 1 2
Im A9 ~ (p_+4.)° 7 3 preall (3.10)
2 a b
Xg 1—xp

where s = (p+q)2. The factor in brackets is just the square of the wave function (2.35)
in lowest order. (I' = 1) and so (3.10) is the QCD, version of the conventional Bjorken
scaling deep inelastic cross-section [28].

2 NP
[ % / g

P ~e \, B P +

(a) (b) (c)

Fig. 16. Model deep inelastic amplitude in O(g?)

In order g2 there are quark self-energy contributions which take m? — m? in Eq. (3.10)
and in addition the graphs of Fig. 16 (plus analogous graphs with gluon exchanges on the
right). The graph of Fig. 16a has the form

AC? = AOTD(p?, xy), (3.11)
where I'® is given by (2.30). Similarly we have
ACY = 4Or@y g2 o)
where

m?

= _k—-/q- qz .

Changing variables in (2.30) to x' = 1+A(m2/q?) gives

oo ~ " f e
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and hence
2
m
AR L 4@ (__% _2) . (3.12)

m

The calculation of Fig. 16¢ is a little more lengthy. There are two x_ “time” orderings
in this case. We summarize the results in Fig. 17, indicating denominators (p?— Hy)!
by dotted lines. The graph 4*°? plus a similar graph with the discontinuity to the left
has the effect of cancelling the mass renormalization of (3.10) which would be caused
by the quark self-energy insertions. This same mechanism operates in the e*e~ annihilation
case studied above to remove all O(g?) effects. Graphs 4*® and 4>V cancel each other.

¢

t ! |
! h i
: ! ArnnLL L
1 | !

L] | ¥
| [}
2 0) ~(2) (2b) _ A0 (1 m?
ARY_A©@ @) (52 ) AP = N0 (L —"—,3—)
1
| i !
I i | / | :
A ) L1 .
| ] T 1 [ 1
2 -
@e) ., (1 m? 2c) _ (01 (1 m°
A% = 4@ (- = A% 2 AO (2 mg)

Fig. 17. “Time” ordered contributions to deep inelastic scattering in O(g?)

This is an example of a very general phenomenon occurring in the model. These graphs
contain the exchange of a “soft” gluon (I = ((m?/q*)p-) from a given line to each of the
two lines of the initial colour singlet state. These contributions are proportional to the
colour charge and thus cancel [29]. Thus as expected the only contribution remaining

is A®» which creates the wave function in O(g?) (see Eq. (2.35)):

ab N o~ (2), .2 b
¢ (xB) ~ P2 —-H?)b(XB) [1 +Fab (P s xB)J' (313)
It should be noted that this is not the only scaling contribution in O(g?), all the contribu-
tions in Fig. 17 scale, but the other contributions cancel. The cancellations discussed
above have their counter part in the non-perturbative calculation to which we now turn.
The “handbag™ graph of Fig. 15a for (—) components of vector currents is given by
1

_ 1
A__ = —4p_+q.)e J‘dx[¢§b(x+(1 —x)xg))? B Y (3.149)
0 §— — —
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where x = k_/p_. In the imaginary part only the root x = r_~ (m?/s) is important as
$22(r,) ~ 0 by (2.27). We have then

» 47rmfe:c
ImA_._ =(p_-+4g.)" ~

a— [ 315
Again, of course, in the physical region we must take into account the existence of
bound states (Fig. 15b). Equation (3.15) can only be true on the average. The actual
amplitude is expressible in terms of the overlap between the wave functions ¢2b and ¢¢b [30].
Averaging the bound state contributions as usual we have
1
4e,

N _ T
ImA__ =(p-+q.) gy U dxgy’(x+(1 ~X)xs)¢ﬁ°(X)] . (3.16)
0

Again due to the rapid oscillation of @, (see Fig. 18) only the region near x = 0 is important.
Changing to the scaling variable ¢ and again using Eq. (2.26) verifies the equivalence of
(3.16) and (3.15) on the average.

=

NN

- X

AN

W

Fig. 18. Pictorial representation of integral in Eq. (3.16)

4By 9By

Mn

Fig. 19. Pictorial representation of Eq. (3.17)

We have seen that for these light-cone dominated processes the final state qq pair
can be treated as if they were free, This can be represented graphically in Fig. 19 or

d(x—x') B (x) @y (x")
3 3 > Y
m; mé¢ s—mli4ie

+ 18 n

3.17)

s—
x 1-x

For the dominant (real) behaviour for large s we have agreement between the two sides
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of (3.17) using completeness

T P B(x) = 8(x—x). (3.18)
For the imaginary part we have for the left-hand side
o m?2 mg n [ m} , mg ,
—nd(x—x")o (s— —— e s - — MxIH(x)+ — d(x—1)do(x'—~1) | (3.19)
x | —x s s s

while for the right-hand side we have

—n Z B2 —mP) ~ —

n

() BE(x). (3.20)

wm 2

We observe from (3.8) that when ¢,(x) is integrated against a smooth function it essentially
has the behaviour

a6 1 {m, . My
(X)) ~ — L-— H(xX)+(—=1)'—d(x—1)|. (3.21)
wn| m m

Substituting (3.21) in (3.20) one finds consistency with (3.19). We thus see in a very concrete
manner how confined quarks act as if they were free. However, Eq. (3.21) is a reasonable
approximation only if Eq. (3.17) is being integrated against a smoothly varying function.
This will turn out not to be the case in naive parton model applications involving quark
fragmentations and a different analysis will be required there.

32. The parton model and processes involving long distances

The processes discussed above are controlled by short-distance phenomena: the
colliding e*¢™ create a qq pair in a very small volume or the electron in deep inelastic
scattering probes the target at very short distances. The final state which emerges is changed
from a qq pair to a meson by confinement but on the average this final state interaction
does not change the probability for the process to take place.

n.P

|
i
Q } a

q
Sng

Fig. 20. “Crossed handbag” diagram for y* — hX

Consider on the other hand the single-particle inclusive annihilation cross-section
(ete~ — y* — hX). In the parton model this is usually represented by the “crossed hand-
bag” diagram analogous to Fig. 15a — see Fig. 20. However, in this case such a diagram
cannot represent the impulse approximation as it does for deep inelastic scattering. The
meson h emerges only after the confining interaction has had a long time to interact —
the quark o does not ‘propagate a short distance. This is particularly evident in QCD,,
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the quarks ac resonate to form a (long-lived!) bound state. How can we then calculate
this process?

The process v* — hX should be related to y*h — X by analytic continuation. If we
take the virtual Compton amplitude y*h — y*h whose imaginary part gives the deep
inelastic total cross-section and continue one g* to a positive value +ie and the other
to a positive value — ie meanwhile crossing the meson lines we obtain an amplitude whose
imaginary part gives the desired annihilation single-particle inclusive cross-section. If
this continuation can also be applied to the scaling function (Eq. (3.15)) in the scaling
region, it corresponds to

1

xg — — tig, (3.22)

X
where xz = p_/q_ is the usual Feynman momentum fraction of the produced hadron
and the +i¢ depend upon which g? enters in xg. Therefore, although no general proof
has ever been given, we expect y* — hX to be given by the analytic continuation of Eq.
(3.15) in the scaling region. Since 0 <C xp <C 1, this analytic continuation takes xgz to
values greater than 1. We need therefore the analytic continuation of the wave function
to argument greater than unity. Let us call the continued wave function <D;5(z). Then we
expect for annihilation
2

=(1
op° (-) )
Xg

Since ¢(x) has a branch point at x = 1 (see (2.27)), ®(1/xg) will be complex. The absolute
value arises from the opposite sense of continuation for the two ¢* variables.

In Section 2.5 we described how confinement gave rise to an enhanced probability
for finding a quark with x &~ 1 and hence the branch point in ¢(x) at x = 1 and complex-
ness of ®(x) for x > 1. Equation (3.23) leads to another (“dual”) way of looking at the
complexness of @ [13]: it is due to the presence of meson poles in g2. Confinement implies
the breakdown of the naive parton model picture of Fig. 20 due to the formation of
hadronic states in the g? channel and these are represented by the phase in @. We will
discuss this further [13, 27] in Section 4.

We now verify that Eq. (3.23) is indeed the correct result in QCD,, first in perturba-
tion theory [27] and then in leading order 1/N, [11, 13].

The discontinuity in s of the zeroth order graph is easily computed and is seen to be
the analytic continuation (p- — p_ and x5 > 1/xg) of Eq. (3.10). In order g> we again
have the graphs of Fig. 16. We have again

22
dnm_e,,
S2

ImA__ = (q_—p_)* (3.23)

A% = 49T ( P’ —1-> . (3.24)
XF

Now it is important to observe that Eq. (3.24) is not'the analytic continuation of Eq. (3.11)

since as we discussed in Section 2.4, I'® for x in [0, 1] is not related to I'® for x > 1

due to the principal value in Eq. (2.30). The amplitude 4*® contains a piece which blows

up like g*A‘®. However, this cancels against a similar term from the time-ordering of 4
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analogous to A‘?>°? leaving a scaling contribution

d 1
A© ("7”"2 PR R
dx p”—Hy(x)

) . (3.25)
x=1/xp

The sum of (3.24) and (3.25) is in fact just the analytic continuation of (3.11) from x
inside [0, I] to x > 1. As expected, therefore, the contribution of interactions between
quarks a and c (Fig. 16b) and b and c (Fig. 16¢) is not negligible in this case and in fact
gives rise to an imaginary part in the wave function (3.13) in this order. This is indicative
of what happens non-perturbatively in leading order 1/N,.

In leading order 1/N, the state X is a single meson state which we label # and thus

1
ImAd._ ~ — |F_|%. (3.26)
mm

Fig. 21. Meson inelastic form factor, F_ (Eq. (3.27))

The inelastic meson form factor F_ is given in terms of a sum over meson poles at m?

by (see Fig. 21)
- m?g) Gy
F_.=q_ E —_— 3.27
1 q>—m}+ie ( )

1=1

where g is the photon-meson coupling given in Eq. (3.7) and G,,, is the three-meson
coupling [8, 17, 23]:

. L i i

‘ [ _ * ba, cb 1—x'
Gy = \/4 om? P de dx’ w ()¢, (1-x) _
N, q——P—o [x(p-_/(q-—p)+x]

af 1=x G 1+x(p-/(q-—p-))] 308
x[ ! (q_/<q_—p_>> ¢’< 4 Ka-—12) ) ‘ .28

In the limit of interest the dominant contribution comes from m? ~ g*> where

N 1 1 da
1—A+ie”

—
4 q¥—mi+ie w'm?
=1 V]

In this case the wave functions ¢, and ¢, oscillate rapidly. Only the first term in (3.28)
survives since in it the oscillations in x’ are in phase (in ggb(— x) the separation of nodes
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in x" is ~ I/n oc 1/s while in gfa(l - x'/(g-/(g-—p-))) it is (1/]) - (9-/(g-—p-)) o< /q*(g?/s)
= 1/s). Using (3.9) we obtain [31]

I o
5 T A(l-/l+la)
a ()

X
[(1——14)2-}— (—l—xF)(l—-z)]
XF

The dominant contribution of the product of the two final coherent wave functions is given
by the cosine of their phase difference. From Eq. (2.24) one has

, B(2)B((1 - xp)2). (3.29)

(1= xF)

XF

I 1
(2)@5*((1 — xp)z) & cos —3{ m2(1— )z +m? In A—m?
m

—m2In[1—-(1=xg)z]+miin(1 -—-z)} ) (3.30)

The A contour can be extended to minus infinity in (3.29) then closed in the appropriate
half-plane for each of the two exponentials in the cosine in (3.30). We find after a change
of variables [11, 13]

1/xp

F_~ (q"__:_QIJZmnmceac J f (u (::))2

i 1
] - — X 1
xexp | — ;—:’7 —m?In xpw—m} ] f: —m} (x— -w) . (3.31)
- F

It can be shown [11, 13] rather easily using t Hooft’s equation that the quantity in brackets
is precisely the analytic continuation ®3°(1/xg) of ¢2°(x). Thus (3.26) plus (3.31) verifies
the expected result of analytic continuation (3.23).

The scaling law of Eq. (3.23) is of the form suggested by the parton model “crossed
handbag” diagram (Fig. 20). The quantity{®{°(1/xz)|?> could be interpreted as the
probability of quark a to fragment into meson h plus quark b since quark c¢ does not
enter in it. However, the physics is not that of the free propagation of the ac pair. The ac
and bc resonances are crucial in obtaining the result (3.23). Here, in contrast to the situation
in Section 3.1 (Eqgs. (3.7) and (3.16)), in the integral over the wave function ¢, of the
unobserved state X there are coherent oscillations with the wave function ¢,. In this case
we cannot use the approximation (3.21). All values of x are important. This is a general
phenomenon which occurs in the scaling limits of processes where a final state hadron
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is involved since it emerges as the result of the decay of a resonance (/ in this case). Long-
-distance effects play an important role giving rise in particular to a compléx amplitude &.

We now turn to another group of processes which are conventionally described by
the parton model: the production of massive lepton pairs in hadron-hadron collisions
(Drell-Yan process [32}, h;h, - y¥X), the single-particle inclusive spectrum in deep
inelastic scattering (Fig. 1, y*h, — h,X), and the two-particle inclusive spectrum in ete-
annihilation (y* — h,;h,X). These three processes are again expected to be related by
analytic continuation as are the processes (y*h — X) and (y* — hX) discussed above.
We first discuss the Drell-Yan process since in some sense it is the most basic of the three.
Like the process (y*h — X) it can be expressed in terms of the matrix element of a product
of two current at short distances. However, in this case the parton model result (see Fig. 22)

A~ (@3, (3.32)
Nc hy 1 ha\"2 1 .

where x; and x, are the momentum fractions of the quarks a and c, respectively, cannot
be directly derived from field theory [33] as in the case of deep inelastic scattering due to
the unknown energy dependence introduced by the two-hadron state. Said another way,
long-distance effects may be important in the evolution of the hadronic matter before the
virtual photon is formed.

Let ‘us first examine the Drell-Yan process in QCD, in. perturbation theory [27]
where as usual the hadrons are replaced by (—) components of vector currents. In zeroth

Fig. 22. Parton model diagram for the Drell-Yan process

order in g2 one finds that the diagram of the form of Fig. 22 dominates over bremsstrahlung-
-type diagrams where the virtual photon is attached to either the b or d quark in Fig. 22.
Equation (3.32) holds with ¢ given by Eq. (2.35) with I" = 1.

In order g2 in addition to quark self-mass terms there are graphs like those shown
in Fig. 23. The first four graphs cancel amongst themselves leaving only a piece which in
turn cancels the quark self-mass terms. The mechanism of this cancellation is the same as
that discussed in the case of deep inelastic scattering. The remaining two graphs obviously
generate the wave functions in order g2,

The Drell-Yan formula (3.32) also holds in leading order 1/N, [34]. Thus the parton
model result holds even in the presence of confinement in QCD,. There are two crucial
steps in the derivation of the Drell-Yan formula in QCD,. The first is the use of Fig. 19
(or Eq. (3.21)) which is allowed in this case as the integration is against-a slowly varying
function — i.e., final state interaction effects are unimportant. The second is the cancel-
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lation of contributions (see, e.g., the first graph in Fig. 23) which lead to bound states in
the virtual photon channel which in principle are present since the ac pair does not propa-
gate freely. The second step does not appear to have such a general basis as the first step.
The cancellation arises from the lack of transverse colour charge separation which assures
that the deep inelastic parton model result holds [8] (Section 3.1) and also leads to the
absence of the Pomeron in QCD, [17, 18]. Since in four dimensions we expect the first
result to still hold but not the second, it is not obvious what will happen in the Drell-Yan

3% 3re
5 2

Fig. 23. Model Drell-Yan amplitudes in O(g?)

The naive parton model graph for the deep inelastic single-particle inclusive cross-
-section (y*h, — h,X) is obtained: from Fig. 22 by crossing (see also Fig. 1). The kine-
matics is conveniently described in the Breit frame where the momenta (E, p) are:

m2
111:<P+ 2—;, -—P); v* : (0, 2x5P). (3.33)

The quark a has the momentum before being struck by the virtual photon
q.: (xBPa '—xBP)

and after
q. : (xgP, xgP).

The rapidities are then as shown in Fig. 24 [36]. The parton model prediction applies to the
region to the right of the “hole” — the photon fragmentation region — and is the analytic

continuation of (3.32)
2
(g 1
A_ _oC <—g7> -
q° ] N

2

(3.34)

- -1
Pt (xp)B52 (;F-)
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where
xp = py-[(P1-+4-)- (3.35)

The behaviour in the remaining part of the rapidity plot is related to soft hadronic effects
and is thus more complicated.

In this process confinement again plays an essential role. The bc system in the direct (s)
channel will form bound states leading to a phase which is contained in ®gi(1/xz). We

“hole” “struck quark”

M Qa Qe

t } t t Yy
-inP ~InP-lnxg 0 InPsinxp

“m—— p— " —
Hadron frag. Photon frag.
and central region
regions in (-q2)
Ins

Fig. 24. Rapidity plot for y*h; — h,X

have studied this process in QCD, in leading order 1/N, [27]. The s channel graphs (Fig. 25a)
indeed lead to the parton model formula (3.34). The ¢ channel graphs (Fig. 25b) are
negligible when ¢ is large. Since

t = m,flx,,+q2(1 —Xg)s (3.36)

for 1 —xg =~ 1/g?, t is finite and these graphs are important and spoil the parton model
result. Equation (3.34) also fails for xp = 1/¢%, ie., in the hole fragmentation region.

Y hy
Samn?
™ X
(a)
 J
Y h,
!tmt
hy X
{b)

Fig. 25. Bound state contributions to y*h, — h,X: (a) s channel bound states; (b) # channel bound states

Equation (3.34) implies a universality of quark fragmentation in annihilation and
deep inelastic scattering (at least not too near the edge of the photon fragmentation region
in the latter process). The question then arises whether the quark fragmentation function
o |®(1/xg)}? is universal for all processes [17]. We have studied [27] hadron-hadron
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scattering (h,h, — h;X) and we find that although the imaginary part of the amplitude
is correctly given by @ (since it is due to s channel bound states) the real part is not. Hence
quark fragmentation is not universal. We expect to obtain the distribution |®(I/xp)}?
only in situations where all invariants are large. Otherwise, exchange (¢ channel) effects
become important as we saw in the case of y*h, — h,X.

4. Confinement and the parton model

In this section, motivated by the QCD, results discussed in Section 3, I discuss some
consequences which confinement may have for applications of the naive parton model.
We saw in Section 3 that (within some limitations to be discussed below) in QCD, scaling
laws of the form suggested by the naive parton model of freely propagating quarks held
for all processes involving a large ¢ (spacelike or timelike) current. I believe this is strong
support for the parton model predictions.

The fact that the naive parton model predictions are true in QCD, is not a trivial
result. They are true even though the parton model picture of freely propagating quarks
does not generally hold. In processes involving quark fragmentation the observed hadron
emerges at long times after the occurrence of the basic hard subprocesses. Confinement
leads to the formation of hadronic intermediate states (compare, e.g., Figs. 20 and 21)
and a characteristic imaginary part to the amplitude in the scaling limit. We explicitly
verified that, nevertheless, scaling laws of the same form suggested by the parton model
held. Although one suspects there is some basic physics of the hadronic states which
leads to this rather remarkable result (in particular, the lack of dependence on the non-
-fragmenting quark) we have not yet been able to discover it. The validity of the scaling
laws can be understood in another, more mathematical, way, however. If one considers
a crossed process where the produced final state hadron now becomes an initial hadron
(e.g., ¥ » hX to y*h —» X or y*h, - h,X to h;h, —» y*X) the hadronic intermediate
states are now in a momentum transfer channel and are unimportant. The parton model
scaling laws for the crossed process then imply, through analyticity, parton model scaling
laws for the original process involving quark fragmentation. This is expected to be true
in any theory. We might say then that in a confining theory: “the parton model is the scaling
laws due to light-cone dominance plus analyticity”.

The validity of the parton model scaling laws in QCD, is non-trivial in another respect.
Although the parton model for deep inelastic scattering follows directly from the short-
-distance behaviour of the theory (and the procedure of averaging over the hadronic singula-
rities — Fig. 19), this is not the case for the Drell-Yan process. We saw that a special cancel-
lation must also take place to remove the effect of the hadronic states in the virtual photon
channel. If this cancellation had not occurred, the Drell-Yan process would have been of
order N rather than the conventional N, ! in the 1/N, expansion [34]. Since this cancella-
tion is related to other cancellations in QCD, some of which are expected to generalize to
four-dimensions and some not, it is difficult to assess its generality. Nonetheless, I feel
that the QCD, results are support for the compatibility of confinement and the Drell-Yan
parton model prediction for massive lepton pair production.
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One of the important features of the parton model is the universality of the quark
fragmentation function. We found universality to hold in QCD, in those instances where
all the channel invariants are large. This seems like a very natural limitation since if some
channel invariant is small (typically for an exchange channel), then bound states in that
channel (or Regge exchanges, etc.) can become important and destroy the parton model
predictions. Thus, in particular, the single-particle inclusive spectrum in hadron-hadron
collisions at small momentum transfer cannot be expected to be given by the quark fragmen-
tation function which occurs in e*e— annihilation and deep inelastic scattering. In addition
the failure of universality may imply a breakdown of the Bjorken-Kogut correspondence
arguments [37] in some cases [27].

We discussed in Sections 2 and 3 one special feature of the hadron and quark fragmen-
tation functions of QCD, which appears to be a general consequence of confinement. We
noted above that confinement leads to the formation of hadronic intermediate states in
processes involving quark fragmentation which give a characteristic phase to the quark
fragmentation amplitude (& of Section 3.2). On the other hand, we saw in Section 2.5
how the long-range confining force led to an enhanced amplitude for finding a wee quark
in a meson compared to the usual behaviour in a superrenormalizable theory and hence
singularities in the meson-quark-antiquark wave function in the quark mass variable x
at x = 0 (and x = 1): $gb(x) ~ x, (1—x)** with 0 < B, < 1. This wave function gives
the hadron fragmentation function measurable in deep inelastic scattering. Due to the
branch points in ¢(x) at x = 0,1 its analytic continuation $(x) which gives the quark
fragmentation function measurable in ete~ annihilation is complex. There is therefore an
amusing duality between the quark-parton and hadron interpretations of this phase [13].
While in non-confining theories the singularities in the hadronic channels referred to
above are not present and no phase is required, in confining theories they cannot be neglected
and we expect the continued wave function to be complex. We therefore believe that the
existence of singularities in ¢(x) at x = 0,1 may be a very general feature of confinement.

The existence of a singularity in ¢(x) at x = 1 implies via the Drell-Yan-West relation
a violation of the integral asymptotic power behaviour of form factors as predicted by
dimensional counting [15,38]. In QCD, explicit calculation confirms this [8]:
F(g®)~ (g®)~ ' "#. The form factor decreases less rapidly than is the case in a non-confining
superrenormalizable theory (F(g?) ~ (9%)~?) due to the enhanced probability of finding
“wee” quarks in a meson. The origin of the large g2 behaviour of the form factor is quite
different [8] from that envisaged in renormalizable theories [15] where F(g%) ~ (¢%)*.
The phase in ¢ could also lead to interference effects in annihilation and deep inelastic
scattering [27, 39]. If one takes the small value of § for light quarks in QCD, [5, 8] seriously,
these effects may be hard to detect experimentally. Nonetheless, they should be kept in
mind since they are likely consequences of confinement and may be important especially
for heavy quarks,

Above, I have tried to abstract some possible consequences of long-distance (confine-
ment) effects for the parton model from the explicit results obtained in QCD,. As noted in
Section 1, one hopes that the long-distance: effects (confinement) and the short-distance
effects (asymptotic freedom) can be treated rather independently and their effects combined
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at the end to give an improved parton model [40]. Studies in QCD, unfortunately cannot
give any definitive answer to whether or not his hope is realized since there is exact scaling
and no short-distance modifications of the naive parton model results. Although nothing
in QCD, is in direct contradiction with this assumption, the important role played by
hadronic bound states in processes with quark fragmentation raises a possible question
about the factorization of the short-distance and long-distance effects in these processes.

The results discussed here are only a beginning attempt to explore the relationship
between the parton model and confinement. A complete understanding will have to await
a more complete and practical understanding of confinement in QCD,.

These lectures are based mostly on work done with R. Anishetty, M.. Baker, R. C.
Brower and W. L. Spence. [ am greatly indebted to them for many illuminating discussions.
I would also like to thank S. D. Ellis, C. Sachrajda, G. Veneziano and T. T. Wu for
discussions.

APPENDIX
Gauge invariance

All studies of physical processes in QCD, have so far been carried out using the
light-cone gauge formalism discussed in Section 2. Since physical amplitudes are gauge
invariant, we would expect to obtain the same result in any other gauge. However, doubts
have been raised in the literature about the behaviour of QCD, in other gauges, specifically
the axial gauges (7 - 4 = 0,5 any vector).

Frishman et al. [41] some time ago pointed out some difficulties with the integral
equations for the quark self-energy and the quark-antiquark scattering amplitude in axial
gauges other than the light-cone gauge. These problems have recently been resolved by
Bars and Green [42] and from their work there appears to be nothing internally inconsistent
in axial gauges using the principal value prescription to regulate the gluon singularity.
Bars and Green did not attempt to show that physical colour singlet amplitudes were
gauge invariant.

On the surface it would appear that one could show gauge invariance through use of
the Ward identities analogously to what is done in four dimensions {43, 44]. Indeed one
can just take the Feynman rules for four-dimensional QCD and specialize them to two
dimensions. The gluon propagator in the axial gauge n- 4 = 0 is

e 1" [ _ Rty o ki ]

CTELT ek ORI
where the # - k singularities are regulated by taking the principal value and there are no
ghosts. When the three and four gluon vertices are multiplied by gluon propagators (A1)
on all legs they vanish in two dimensions. Thus in QCD, we can also include graphs with
three and four gluon vertices since they contribute nothing. Under a change in gauge
7 — n+3n, one easily sees that 6D, is proportional to k, and/or k,. The change in an
amplitude is thus proportional to the divergence of an amplitude with two external gluons.

(AD)
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1t would appear then that the Ward identities could be used as is usually done in QCD, [45]
to show this divergence vanishes and hence the amplitude is gauge invariant [44].

Wu [46] has pointed out recently, however, that such an application of the Ward
identities is too naive due to the very strong singularities in the gluon propagator ((2.5)
and (A1)). The Ward identities seem to show that the numerators of various Feynman
integrals vanish, but due to the singularities in the denominators if one evaluates each
integral and adds them up one does not find zero. This problem occurs only in graphs with

D

)]

(b)

Fig. A.1. (a) A three-gluon vertex contribution to the two-point function. (b) Contributions arising from
(a) under a change of gauge # — 7+d&7. The dashed lines indicate &k, applied to a gluon line

two or more gluon propagators where there is more than one principal value involved
so let us illustrate it with the simplest example: the two-point function in O(g*). According
to the scheme outlined above we include also graphs with a three-gluon vertex, for example
Fig. A.1a. Under a small change n — 5+ 0n any one of the three gluon propagators may
change leading contributions like those shown in Fig. A.lb to leading order in I/N.

N\ k

ki ! ks

(I D) (- Ge)

kl’q kz'q ka-q I " \ ’I

(D)

Fig. A.2. Contributions to the change of the two-point function under 1 — n4-Jdn which are related to
Fig. A.1b

Normally these would be combined with the six contributions in Fig. A.2 to give zero
using the Ward identities. Note some terms are dropped because they are non-leading
in 1/N,.

The introduction of the graphs of Fig. A.1 is just a trick to organize the graphs which
should combine to cancel. Since the change in the amplitude without them (e.g., Fig. A.2)
should vanish [43, 46] we should have found that the sum in Fig. A.1b as well as that
in Fig. A.2 should vanish. This is indeed the case for the sum of Fig. A.1b but is not for
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that of Fig. A.2. Adding on six similar graphs inverted top to bottom we find for a small
change of gauge away from the light-cone gauge the sum is proportional to

1 1 1

1 1
dx, | dx, | dx :
J ‘f ZJ 42— Hoy(x)) g>—Ho(xs)

0 ] 0

1 1 1 . '
* [(x,—-xzf <<x2-x3)2 - (xs—xoZ) Teyele perms']’ (A2

where x; = k;/q_ and ¢q is the external momentum. The quantity in square brackets can
be written as [46]

. a3 1 1 1 1 1
—3 + + . {A3)
0%10X30x3 | (X1 —X3) (Xz—X3)  (X3—X3) (x3—X;)  (x3—%;) (x;~X;)
If one disregards the +ie’s, the brackets in Eq. (A3) vanish. However, if each denominator
is a principal value denominator, one finds

g (3 —%2) %+ (x5 —%3)% + (x5 — x,)°

T2 [(x1 = x5)2 +€%] [(x2—x3)* + 2] [(x3—x,)* +&°]

(A4)

Although this is apparently of order &2, it gives rise to a finite contribution to Eq. (A2)
from the region of integration (x; — x;) = O(g). (Note the x, integration can be done trivially
so the integration volume is O(g?) while Eq. (A4) is O(¢~2).) A similar argument applies
to the remaining contributions to the change in the amplitude. Thus the naive gauge
invariance agreement apparently fails {46]. Wu has consequently advocated abandoning
the principal value prescription (2.5). He has introduced a new regularization prescription
which preserves gauge invariance. Unfortunately this leads to a very complicated equation
for the bound states which has resisted solution [47].

However, the issue is not fully resolved yet. The above criticism of the ordinary princi-
pal value prescription is not watertight; the problem is riddled with singularities. It is
possible that the ordinary principal value prescription in the light-cone gauge gives the
correct physical amplitudes for external colour singlet sources.

Some weak points in the above criticism are the following.

(1) Wu used the form

ab cab Miullyv

D, = id o (AS)
where 5 - n, = 0, for the gluon propagator. For this form, it is not true that 4D,,/on is
proportional to k, since P(1/x*) # xP(1/x®) for such singular integrals encountered here.
Thus the change in the amplitude is not actually given by Fig. A.2 or Eq. (A2). The choice
of propagator in Eq. (Al) presents other difficulties — the 1/k® singularity must be
regularized though it is spurious in two dimensions. In fact one cannot pass to the principal
value light-cone gauge using Eq. (A1) [44].
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(i) Infinities appear in the change of the amplitude §4/6n when the above procedure
is used which do not appear in the amplitude in a given gauge. For a change away from
the light-cone gauge the &, integrals become ultra-violet divergent [48].

I believe the gauge invariance problem needs further study in order to resolve these
points. What would be useful are some simple explicit calculations of physical amplitudes
in two different gauges using the principal value prescription like (2.5) and using Wu
prescription [46]. Any disagreement between the results would then eliminate once and
for all some prescriptions.

The Ward identities can also be used to show formally that the 1/(y-k)*> gluon
propagator cancels in the sum of all graphs contributing to a physical amplitude [44, 49].
This would then seem to provide an understanding of the reason why the principal value
prescription does not spoil analyticity of physical amplitudes [14]. Unfortunately this
argument suffers also from similar difficulties to the gauge invariant argument.

This being the “state of the art”, in these lectures I have discussed QCD, as originally
formulated by ’t Hooft. It is possible that it gives the correct physical amplitudes for
a gauge invariant two-dimensional QCD. Even if it does not, as long as 1t has no internal
inconsistencies, it is a model with both confinement and partons and is therefore, I think,
very interesting. One can see from the results of Section 2 and Section 3.1 that the model
so far has exhibited no internal inconsistencies. On the contrary, the verification of Eq. (3.3)
demonstrates a high degree of consistency between the unambiguous perturbation theory
graph of Fig. 12 and the solutions of ’t Hooft’s equation (Eq. 3.8)).

Editorial note. This article was proofread by the editors only, not by the author.
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