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HOW THE TRANSVERSE MOMENTA OF CLUSTERS AFFECT
THE PREDICTED SHORT RANGE TWO-PARTICLE
CORRELATIONS*
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Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati
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1t is shown that taking into account the transverse momenta of clusters, one obtains
for the short range correlations formulae, which are about as simple as those well-known
for the py = 0 case, but agree much better with experiment.

Particles produced in high energy hadron-hadron collisions exhibit short range
positive (attractive) correlations. For recent data see Refs [1] and [2]. It has been noticed
by a number of people (Refs [3-9]) that these correlations can be easily explained if the
final particles are decay products of clusters, which have spherically symmetrical decay
distributions. Simple analytic formulae for the short range part of the correlation function
have been derived assuming that the decaying clusters have zero transverse momentum.
More general cases have been studied by Monte Carlo methods.

Here we show that for correlations among pions the simple analytic formulae can
also be derived, when the condition of zero transverse momentum for the cluster is relaxed.
Using for the mass and transverse momentum distribution of the clusters the estimates
from Ref. [10], we find for the short range part of the correlation function
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where 7, and 5, are the pseudorapidities (n = ln:ctg E) of the two particles, and K (see

derivation) is a constant. Previous analytic formulae were giving o ~ 0.9 (note that we
are using pseudorapidities, so that the finite mass corrections given e. g. in Ref. [11] are

* Dedicated to Professor Kazimierz Guminski on the occasion of his 70-th birthday.
** On leave from Institute of Nuclear Physics, Krakéw, Poland. Mailing address: Instytut Fizyki
Jadrowej, Kawiory 26a, 30-055 Krak6éw, Poland.

87



38

not applicable). The recent experimental estimates are ¢ = 0.65 from Ref. [1]and o = 0.60
from Ref. [2].

The derivation of formula (1), which is a simple extension of the derivation given
for the pr = 0 case in Ref. [5], is as follows. Let us consider a cluster with mass M, trans-
verse momentum py = M sinh ¥, and longitudinal momentum p; = 0. The assumption
pL = 0 is not very restrictive, because with respect to Lorentz transformations along the
beam axis the resulting formula (6) is almost invariant (it would be rigorously invariant,
if the pseudorapidities were replaced by rapidities). Consequently, it is not necessary to
specify in which Lorentz frame py = 0. The single particle density in 5 for the decay
products is

dcos @
dn

e(m) = j‘f(Eo)PdE dg, 6))

where the subscript “0” refers to quantities evaluated in the rest frame of the cluster.
Using the Lorentz transformation

Ey = Efcosh y— LS Y 3
= cosh Y~ ————cos
° Ecoshy ? )

and making the ultrarelativistic approximation P = E (see discussion at the end of the paper,
this approximation is not applicable for particles heavier than pions), we find

n cosh ¥
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where 7 is the number of particles considered (e. g. of positive pions) among the decay
products of the cluster. For ¥ = 0 this density reduces to the familiar cosh—2# distribution.
As well-known, for ¥ = 0 formula (4) may be closely approximated by a Gaussian.
We found that in the whole region 0 << Y <{ 2 a good approximation is
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where
L 1.161 cosh? Y —0.277 (5)
— = 1, S —0.277.
26%(Y)

The choice of the “best” value of ¢(Y) deserves a comment. We assumed that (4)
should agree with (4) as to the value of # where () = $0(0). For Y = 0 this yields
a(0) = 0.75, which is smaller than the value o(0) = 0.91 derived by cosmic ray physicists

(cf. e. g. Ref. [12]) from the condition ¢%(0) = | x? cosh~2xdx. We think that our choice

o
corresponds more closely to the kind of fits made in Refs [1] and [2].
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The short range part of the correlation function corresponding to the density (4')
is (see Ref. [5] for a discussion)

n(n—1) _mtm-202\ 0 (-6

C(ny, =(N-—5— 402(Y) e 4ai(N) .

(115 12) < 2m0%(Y) © > (6)
Here N, n, H (capital ) denote respectively the number of clusters, the multiplicity in the
decay of one cluster and the pseudorapidity of the cluster. The brackets { > denote aver-
aging over N, n and H. The result of averaging over H depends on the experimental situa-
tion. In the two most interesting cases, however, when either H has a flat distribution in
a range large compared with o(Y)[1], or one of the pseudorapidities #, is fixed and no other
constraints H are imposed [2], averaging over H introduces an additional factor ¢(Y).
Assuming that ¥ and »n are not correlated to ¥ we have therefore
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where K does not depend on Y. Averaging (7) over the distribution [10]
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we find finally

C(ny, ) = K’[ .
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Here
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Yy = ’ (10)
K and K’ are constants, and in the Gaussian approximation ¢ = 0.605 so that formula (1)
is obtained.

Finally, let us discuss the ultrarelativistic approximation P =~ Ei.e.m= 0. The
correction of order m? to the single particle distribution is

m? coshY 1
= — | P, f(E,)E;2dE -1 . 11
0:(n) 2 j of(Eo)Eo"dE, [[1 +sinh? Y tgh? 7]/ ] cosh? 5 an

For Y = 0 this correction vanishes. Otherwise it can be split into two terms by opening
the square bracket. The first term just renormalizes the leading term (4). The second
gives a negative, approximately Gaussian distribution, thus it makes the total distribution
broader. The normalization of this terms depends on the form of the function f(E,).
Putting f(E,) ~ e~ #E°, with B fixed to get (E,> = 375 MeV as in Ref. [10], we found that
for pions, at n = Y = 0 the negative term is about 11 per cent of the renormalized main
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term. Thus, for pions it is a reasonable approximation to use P &~ E. For heavier particles
our derivation is not applicable.

The author thanks Professors A. Bialas and M. Le Bellac for discussions and Profes-
sors G. Bellettini and M. Greco for hospitality in the Frascati National Laboratories,
where this work was completed.
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