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The quaternion algebra over the field of complex numbers is used for the realization
of transformations from the de Sitter groups SO(4,1) and SO(3,2) by the two-row matrices.
Within this approach a technique of the so-called horospherical shifts is developed, which
are of great importaace in quantum field theory with the fundamental length. The spinor
representations of both the groups are also coastructed.

But the virtue of the quaternion lies not so much as yet in solving hard questions, as
in enabling us to see the meaning of the question and of its solution.

J. C. Maxwell

1

Quantum field theory with momentum space of constant curvature has been developed
in the papers {1-7]. Tt has been shown that in the Bogolubov axiomatic approach [8-10]
the ordinary flat momentum space off the mass shell can be replaced by a space of constant
curvature. Quantum field theory based on this hypothesis is uncontradictory and represents
an alternative to the traditional theory.

Both possible variants of the curved momentum space, which possess metrics

gxePpt = p—pi~pi—pi-pi = -1, 1.1)
gxP Pt = pi—pi-pi-pi+pi=1, (1.2

and motion groups SO(4, 1) and SO(3,2) respectively, were considered.
Fourier-analysis employing the main series of the unitary irreducible representations
of de Sitter groups allowed one to introduce an adequate configuration representation,
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the causality condition in the new configuration space being a straightforward generaliza-
tion of the Bogolubov causality condition. There are two operations of translation, which
are of importance in the theory with curved p-space. Namely, these are curved and orispher-
ical translations. In the present paper we shall develop a convenient technique for describ-
ing these transformations with the help of hypercomplex realizations of the covering groups
of de Sitter groups SO(4,1) and SO(3,2)'. This realization will also serve as a basis for
constructing spinor (finite-dimensional, non-unitary) representations of de Sitter groups
{11]. The spinor representations are necessary for constructing equations of motion and
configuration representation for particles with spin.

We call the hypercomplex realization a group of 2 x2 matrices with elements that
belong to the algebra {K} of hypercomplex numbers (quaternions) over the field of complex
numbers {Z}. The use of the complex quaternions is of importance: exactly in this very case
a uniform treatment of all the real branches of the complex orthogonal group is possible.
These branches turn into one another under analytic continuations in the components of
the 5-momentum. In other words, we acquire an apparatus that enables us to treat uni-
formly both SO(4,1) and SO(3,2)-variants of quantum field theory and analogues of
their euclidean formulations.

The algebra {K} comprises singular elements — devisors of zero. This fact is imme-
diately connected with the existence of isotropic vectors in subspaces corresponding to the
reduction onto pseudoorthogonal groups of lesser dimension. Classical real quanternions
arise in constructing the universal covering of the SO(4,1) group [12] (positively-defined
quadratic form p3+p?+p3+p3 corresponding to the reduction SO(4,1) > SO(3,1) coin-
cides with the norm of the hamiltonian quaternion). Universal covering SL(2, C) [13,
14] of the Lorentz group arises in reducing to the subalgebra of complex number {Z},
(see formula 2.11d).

It is worth noting that the quaternions were repeatedly considered as number systems
for quantum mechanics [15]. In papers [16] the quaternions were applied to the consider-
ation of the Lorentz-group representations and to the construction of wave equation in
spaces of constant curvature.

2. Basic definitions
Let us consider an algebra {K} of hypercomplex numbers of the form
a = a0+a,-o'i (i = 1, 2, 3), (2.1)

where a,, a; € {K} and {0;} is a system of three imaginary units with the table of multipli-
cation

O’iO'J- = 6ij+i6ijko-k' (2.2)

t A hypercomplex realization of the O(3,2)-group transformations in application to the field theory
with curved p-space has been considered in the paper [7].
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This system can be realized with the help of the Pauli matrices. Later we shall use
this fact in construction of the spinor representations. The multiplication of the qua-
ternions by a complex number z € {Z}, addition and subtraction are defined as follows:

za = zdgy+za;6; (2.3a)
a+b = (ag+be)+(a;+byo;, (2.3b)
a—b = (ag—bo)+(a;—b)a; = a+(—b). (2.3¢)

The formula (2.2) insures the product of two quaternions to be a quaternion again.
The operation of quaternion conjugation is given by the formula

a—a=dy—apo;, 2.4)
and for any a,be {K}
(ab) = ba. 2.5)
The quaternion norm is defined by the relation

llal| = aa = aa. (2.6)

It is evident that the norm is a complex number; it can be, in particular, negative or zero.
In the case |la|| # 0 we can define the inverse to a element of the algebra {K}

al=—, (2.7a)

aa™ = g'la = 1. (2.7b)

We shall call zero norm elements of the algebra {K} singular elements or devisors of zero:
the inverse a~! is not defined for such elements.
Let us introduce the operation of hermitian conjugation of the quaternions?

a—-a* =ag+aio;, (2.8a)
(ab)* = b*a", (2.8b)
and also the operation of complex conjugation of the quaternions
a—d=ag—alo,, (2.9a)
(ab) = ab. (2.9b)

A successive application of any of the two operations —, + or A is equivalent to the
application of the third one.

2 Asterisk denotes the ordinary complex conjugation.
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For example
(a)t = a. 2.10)
Besides these we shall also need the operation of partial conjugation
a— d = 63403 = Gg+0,d,+6,a,—063a5, (2.11a)

(ab) = ba. (2.11b)

The algebra of the complex quaternions (2.1) contains three closed subalgebras
which can be sorted out in the following way

a = ag+apo;, a,c{Z}, (2.12a)

b = bo+bio,, b, e {R}, (2.12b)

€= cot+C0;+Cr0,+C3i03, ¢, €{R}, (2.12¢)
d = dy+dics, doqe{R}, (2.12d)

{R} being the field of the real numbers. The system (2.12d) is isomorphic to the ordinary
complex numbers. The system (2.12b) coincides with the classical (real) quaternions [16].
Three imaginary units that build up the basis of the classical quaternions are related
to o; by the formulae

i = —igy, Jj=lio,, k= —ios. 2.13)

The system (2.12¢), unlike the systems (2.12b) and (2.12d), contains divisors of zero.
Further we shall see that the branches (2.12b) and (2.12¢) arise in the natural way in analysing
covering groups of the SO(4,1) and SO(3,2) groups.

Let us now consider 2x2 matrices

ab
U = (c d) s (2.14)
a, b, ¢, d being quaternions of the form (2.1). We denote by u* the “hermitian conjugate”
matrix
. ac
={_ = 2.15
u <b d) (2.15)

one can easily verify that the determinant is uniquely defined for hypercomplex hermitian
matrices (" = u):

det u = ad—bc = da—cb, (2.16)

which is not valid for hypercomplex matrices in general. (The hermitian conjugation of
hypercomplex matrices should be distinguished from the hermitian conjugation of quater-
nions that has been introduced earlier.)
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3. Hypercomplex realization of the universal covering group of the SO(4,1)-group

Let us introduce hermitian matrices

0”_‘01 k_.,O ""Gk 4— “io .

Now we can relate any 5-vector P, to the corresponding matrix

—ips P -
P = piit = C ), = po—po. 3.2
pr (p’p4>PPoP (3.2)
It is obvious that
P =
det? = — gy pph. (3.3)

Let u be a unitary quaternion matrix (u+ = u~') of the form (2.13).
The conditions

wy =1, (3.4a)
uu =1, (3.4b)
produce two (equivalent) systems of restrictions on the elements of the matrix u:
aa+bb = cc+dd =1, ac+bd =0, (3.5a)
aa+cc =bb+dd =1, ab+cd =0. (3.5b)
Let us impose on the elements of the matrix v also the restrictions
ar=d, bt=c 3.6

One can easily prove that the set of matrices « that satisfy the relations (3.4), (3.6) makes
up a 10 (real)-parameter group U. Transformations

P = uPut, uelU 3.7

conserve the quadratic form (3.3b). It is evident that matrices # and —u induce the same
transformation of the 5-vector p;. Thus, the matrix group U is the universal covering
in respect to the SO(4,1)-group.

Let us also define the matrix group V that is connected with U through a similarity
transformation

V =8SUs-, (3.8)
1 /1

v = (”y‘ g) (3.10)

If a matrix ve V
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is related to a matrix u € U through the transformation (3.8) then we get the following
correspondence between the elements of these matrices:
a = Ya—ib+ic+d), P = H—ia+b+c+id), (3.11)
y = $(a+b+c—d), 6= La+ib—ic+d).

The matrix vt is

v = §WtTST? = <5 ’?) (3.12)
7 &
The elements o, B, y, & are subject to the conditions
ad+p7 =1, af+Pfu=7y5+67=0 (3.13a)
or equivalently
dut+fy =1, Fatay=28+p5=0. (3.13b)
Moreover, the formulae (3.6) and (3.11) ‘give
at =8, ft=p, y =73 & =39. (3.14)
Let us introduce a matrix
- ipgo
7= pat= <11)ipf;,( p’(’)’;’l‘h), (3.15)

det p = — g, p"p", (3.16)

where the hermitian matrices =’ are defined as follows:

0_ 10 k___ 0 —iO'k 4_ _1 0
7 _<O 1), A —ig, 0 )’ o= 01 G147

The transformation of the matrix p with a matrix ve V

7 = vpot (3.18)

also conserves the quadratic form (3.16b).
Due to the relations (3.13), (3.14), the following lemma can be easily proved: any
element v € V satisfying the condition ||x|| # 0 can be uniquely represented in the form

1 0\/e? 0 £ 0\ (1
= ()6 )@ e)o)

z = izg0og, J = iug0Og,

where

§ = Cot+ilgoi, =1,

t: ZK’ Hks ‘EOa ‘:‘K € {R}- (320)
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The relations (3.20) stipulate that the elements of the matrix v belong to the subalgebra
(2.12b), i.e. to the subalgebra of the classical quaternions.

The relation (3.19) immediately gives a natural parametrization for the elements
of the matrix v

o=, B=epn, y=é28 §=elPziutet?, (3.21)

It is also important that due to the factorization (3.19) we get various subgroups of
the group V.
Let us consider a subgroup Q C ¥ which includes the matrices of the following type:

1 0\/e? 0 e? 0
W = (Z ]>(0 e—z/2> = <etlzz PRl (3.22)

This four-parametric subgroup has important physical applications [2,5] (see also [18]).
We call a set of points that arises from one fixed point of the hyperboloid (1.1) under
the action of transformations

v, = v o, (3.23)

where @ runs over the whole subgroup & (cf. [13]), an orisphere of de Sitter space. Thus,
the orisphere is defined by a point of de Sitter space and an element v of de Sitter group.

Supposing the 5-vector p; is of the form p = (0,0,0,0, 1) and v = w, we derive
from (3.18) a relation that maps the set of parameters of the group Q onto the hyper-
boloid (1.1)

=0 (_(1) ?) w*. (3.24)

Having equated the corresponding elements of the matrices in (3.24), we get an ori-
spherical coordinate system on this hyperboloid (cf. [2])

Pa—Po =€, pstpo=e ‘~€z, p=ez (3:25)

The group of transformations @ induces on the hyperboloid (1.1) a certain group
operation — a group of orispherical translations. When applied to a 5-vector, this operation
will be denoted with the symbol @:

p' = p&g. (3.26)
The formula (3.26) is equivalent to the relations
t' = t+s, zx = e ‘zg+wg, (B.27

(t, zx), (¢', z¥) and (s, wg) being the orispherical coordinates of the S-vectors p,p’ and
q, respectively.
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4. Hypercomplex realization of the covering group of the SO(3,2)-group

Let us first note that the quadratic form (1.1) can be transformed into the form (1.2)
by the substitution p, — ip,. This procedure can be also applied for deriving other formulae
concerning the covering of the SO(3,2)-group. Thus, the analysis of the SO(3,2)-group
is very much alike to that of the SO(4,1)-group.

Substituting, for example, p, — ip, in (3,2) 'we get

Pa D L
P = = p;1°, 4.1
(p _ p4> 143 (4.1)
det # = —gx,p"ph, (4.2)

the hermitian matrices 7* now being of the form

0_01 k__o—-O'k 4—1 0
T-(lo,'c—ako,t—o__l. 4.3)

The covering group U of the SO(3,2)-group is formed by the unitary matrices u that satisfy
the conditions (3.5) and also the relations®

at=d, b= -—c (4.4)
The transition to the group ¥ is now carried out with the help of the transformation
v = Tul, 4.5

where

1 1 _0'3
T = :/3(% X > (4.6)

The relation between the elements of the matrices v and u reads:
o = da—bos—0osc+o03dos), P = Haos+b—05c05—03d), 4.7
y = ¥osa—063bos+c—~dos), & = Yosaos+0sb+co3+d).

Th inverse matrix v is

b= TPy T2 =< 6 ‘/f), “8)

._..'y o

~ denoting the operation of partial conjugation (2.11).
The elements o, B8, y, § are subject to the conditions

ab—pj =1, 96—065 = pai—aff =0, (4.92)

3 The universal covering of the group SO(3,2) has an infinite discrete centre. Nevertheless
the “minimal” covering group is sufficient for the construction of all the spinor representations of the
group S0O(3,2).
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or equivalently

ba—fy =1, dy—yu=358—p5=0. (4.9b)
Moreover, owing to the formulae (4.4) and (4.7), we have the restrictions
ar =G, pr=p y=% o&-=34 (4.10)

Let us now define a matrix p according to the formula

L P3+pa Po—P101— D20,
Y= pa = , 4.11
7 =h (P0+P10'1+17202 DP3—Pa ) @10

det 7 = —gg p*p~. (4.12)

The hermitian matrices =¥ are defined as follows:

01 ‘0 -¢ 10 1 0
o __ L2 _ 1,2 3 - 4 = . .
2=(o) =, ) #=l0) =l ) e

A lemma analogous to that of the previous paragraph is valid for the transformations v
P = vpvt, 4.19)

which belong to the group V. Namely, any element v € ¥ satisfying the condition {ja|| # 0
can be uniquely represented in the form

10\/e?0 EON[1 p
=EE )6 w9

Z = Zo+2z,0,+2305, [P = Uo+ U0+ 0,

where

§ =¢ot+&i0,+&,0,+ 8503, HEN = +1.
Zo, Zks Mo» Mi> Cos Cxs t € {R}. (4.16)

The relations (4.16) show that the parameters of the group ¥ in the present case
appertain to the branch (2.12¢).

Everything told in the previous paragraph about the orispheres can be transferred
to the case of the S0O(3,2)-group.

Consideration of the subgroup 2 C V of the triangular matrices

e 0
o= <ze'/2 e_,,z) @.17)

leads, in complete analogy to the formulae (3.24), (3.25), to the pseudooripherical coordi-
nates on the hyperboloid (1.2)

P3t+ps=¢€, p3—p,= (zg—-zf—zﬁ)e'-—e“’, Poa,2 = Zo,l,zet (4.18)
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and to the pseudoorispherical translations

p' = pDgq, (4.19a)
UV =1t+4s, 2zg=e “zg+wy, (4.19b)

(t, zx), (¢, zx), (5, wg) being the pseudoorispherical coordinates of the vectors p, p’ and g¢.

5. Spinor representations of the groups SO(4,1) and SO(3,2)

We get the lowest spinor representation of the SO(4,1)-group if we substitute in the
hypercomplex matrices (3.4)—(3.6) Pauli matrices for the quaternions o;.

The matrices t“ (3.1) are transformed under this substitution into matrices I'* that
appertain to the algebra of Dirac matrices*

=94 T*=9" =0,1,273). (5.1)
These matrices are subject to the relation
1
Iy = - a1 expanel " CMITY, (5.2)

exynp being the antisymmetric tensor (£55234 = 1).
The set of 15 Dirac matrices divides in accordance with their transformation properties
into SO(4,1)-vector and SO(4,1)-antisymmetric tensor

MRE = %[r", . (5.3)

The matrices (5.3) are infinitesimal operators of the lowest spinor representation of the
SO(4,1)-group. Finite transformations of this group corresponding to the hypercomplex
matrices u will be denoted by A. The relations (3.5), (3.6) lead to the following restrictions
on the matrices A

GAT€¢ A =1, TI°A*'I’4=1, (5.9

co . 0 -1
%=<0 C>=F0F2F4, C = —lo'2=<1 0). (5.5)

The restrictions (5.4) provide that the matrix of a finite transformation

where

AFy = LSp (I Aryd™
satisfies the conditions

A% >0, AL AMg = 65y

4 We use the representation of Dirac matrices accepted in [10] (see formula 2.4.15).
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In order to single out a connected group we shall also impose the condition det 4 = 1,
which is consistent with (5.4).

Thus, the group of the fourth-order matrices satisfying the conditions
6AT¢" A =1, TI°A'T°A=1, detd=1 (5.6)

forms the universal covering of the SO(4,1)-group. Let us introduce spinors &,, &%, 3., #*
which transform with the help of the matrices 4, (AT)1, A*, (4+)! respectively. It is
evident that owing to the relations (5.6) all these representations are equivalent. Therefore
we restrict ourselves to the spinors with lower undotted indices. These indices should
be raised with the help of the matrix € (5.5)

éa = %aﬂ€ﬂ9 éa = (%—1)1”53; (gT = ~¢.

We should also mention that there are two invariant spin-tensors: the spin-tensor of the
second rank %,; and the antisymmetric spin-tensor of the fourth rank &,5,5 (61234 = 1).
The irreducible representations of the group SO(4,1) are realized by the spinors, which
satisfy the condition

")ty ae oz =0

in any pair of indices and, moreover, possess a certain symmetry under the permutation
of indices. Owing to the existence of the antisymmetric spin-tensor ¢,,5, We can construct
all the spinor representations of the group SO(4,1) using only the spinors of the symmetry
that corresponds to the Young tableaux of the following type:

n
A

T

m

In the present paper we shall restrict ourselves to a more detailed consideration of the
symmetric spinors which are of interest for physical applications.
A representation realized by a symmetric spinor of the rank »

P

Ay s Ay

is of dimension (n+ 1)(n+2)(rn+3)/3!, the Casimir operators C; and C, 19] acquire in
such representations the following values

AKL n(n+4)

N n(n+4) (n+2)*
C, = 1 My, M*" S C, = WyW¥ = .

2 8

.7)

The expression for the generators My, reads

n

MKL = Z (AIKL)i (5~8)

i=1
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and the operator Wy is defined by the relation
n +2 z :
Wy = 't%‘sKLMNSM M = e (5.9)

Let us pass to a new numeration of spinor components

! n-I
D,y oy, = Foo ('5 s “2—> , (5.10)

l / —1
where > 4+ ¢ — the number of indices 1, 5~ o — the number of indices 2, n—z— +0 —

—~1
the number of indices 3, %—- — o — the number of indices 4.

The following bounds on /, p, ¢ are evident

n=1>0 -

o] ~

In the explicit form

F (i Fl—l)- 121 2.2 33 4.4 (511)
@iy’ 9 \/l+ \ i ‘n—l+>'n—l |
— M= —o)!|l— +06}!{— —0]!
2 7¢I\ 7 ( 2 2

The coefficient in (5.11) arises owing to the demand that the scalar product of two spinors
be invariant

I n-I 1l n-lI @™ P
esf = — e =iV = T %18n
E F (2 - )Fw(2 ' ) inv = . 6.12)

The law of the transformation of these components reads

n

l n-—1I m n—m
p (L, o] meep, (2, , 13
06(2 2) Z@(A)ze (2 2) 5.13)
(]

m=

where the “matrix” 2(4)5 is uniquely defined by the matrix 4. One can easily see

;@0
that in the case of the Lorentz transformations

D(AE? = D(A)26y, (5.14)

that is the components with different / transform independently.
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This numeration of the spinor components corresponds to the reduction SO®4,1) D
D S0(3,1). Hence, we easily derive that the irreducible representation of the SO(4,1)-group
realized by a symmetric spinor of the rank n is decomposed into direct sum of irreducible
representations of the Lorentz group

_ I n-1I 515
(")50(4,1) = Z ® (*‘2* s —2—) . (5.15)

=0

In considering spinor representations of the SO(3,2) group we get, due to the formula (4.2),
the following S-vector of I'-matrices

I'* =qy* I =iy, (5.16)
The generators M*" are still defined by the relation (5.2), and instead of (5.3) we now
have
i
FK = - 4—’ SKLMNsrLFMFNFS. (5.17)
The matrices of finite transformations 4, similarly to (5.6), satisfy the conditions
A6 'A =1, T°T*A'I*r°A4 =1, detd=1. (5.18)

It is obvious that, in exact analogy to the case of the SO(4,1)-group, all the lowest
spinor representations are equivalent, the irreducible representations being realized by
the spinors possessing zero convolution in any pair of indices and a certain symmetry
which corresponds to the same type of Young tableaux, as in the case of the group SO(4,1).
Here we shall also consider only symmetric representations.

A symmetric spinor @,, , of the rank n realizes the representation of dimension
(n+1)(n+2)(n+3) [3]. The generators M** are defined by the same formula (5.8) and
the operator Wy appears to be

2
Wy = —z": Z(FK)i. (5.19)
i=1

In the symmetric representations the Casimir operators C, and C, assume the values

’ 2
_ n(nz-}-4) o C=— n(n+4) (n+2) - (5.20)

C
! 2 8

The relations (5.10) — (5.15) are transferred to the case of the SO(3,2)-group without
alteration. In particular, the decomposition of the irreducible, representation of the
SO(3,2)-group reads

n

1 —1
(Msoi,2) = Z ® (‘5 ) %) . (5.21)
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APPENDIX

We shall list here the explicit form of the matrices which correspond to finite rotations
in various planes.
1. O(4,1)-group

a) Three-dimensional rotation uz(w) around the axis n

0o L, . © 0
cos 5 + i(on) sin 5

uy(w) = . (A1
0 cos 2 +i(on) sin i
2 2

b) Pure Lorentz transformation (boost) corresponding to the velocity v = 7 th

ch x —(on) sh x 0
2 2

ugx) = ) . (A2)
0 ch g +(on) sh i—;

¢) Rotations u,3(5) in the plane (4, n) i.e. curved translations [3] by the vector
K, = (0, nsin 8, cos 8)

—-— 0
cos - — i(on) sin 3
ui(0) = . (A.3)

-e . O
—i(on) sin 5 cos -

d) Hyperbolic {’otations toa(p) in the plane (0,4), i.e. curved translations by the
vector K; = (sh y, 0, ch )

ch _Z.)_ —ish %
Upa(y) = v . (A4)
ish— cht
2 2

II. group 0O(3,2)

The matrices related to the items a) and b) in the case of the O(3,2)-group coincide
with (A.1) and (A.2).
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¢) Hyperbolic rotations u,;(y") in the plane (4, ;1'), i.e. curved translations by the
vector Ky = (0, 7 sh ¢', ch )
sht  Grycn L
, 2 2
u4—;(1l)) = ’(/)/ ,(pl ‘ (A‘S)
(on)ch—  sh—
2 2

d) Rotations u4,(6') in the plane (0,4), that is curved translations by the vector
K; = (sin &', 0, cos &)

(A.6)
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