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The superhamiltonian and the supermomentum are constructed for the Dirac field
in curved spacetime and it is shown that field dynamics and kinematics of spacelike hyper-
surfaces are consistent.

1. Introduction: Field dynamics in hyperspace

Since the investigations by Dirac, Tomonaga and Schwinger it is well known that
the definition of canonical commutation relations and quantum states on curved spacelike
hypersurfaces is useful even in the Minkowski spacetime. In a general Riemannian back-
ground this procedure is not only useful, but unavoidable because of the nonexistence
of flat hypersurfaces.

A hypersurface X (normal vector n*, nnn* = —1) is given, if we know in which
points X* of spacetime the points x* of the hypersurface are situated!,

X" = XHGO).

Two points with the same intrinsic coor&iinates x® on two neighboured hypersurfaces X
and X' are connected by an infinitesimal deformation SX*(x®) which is composed of
a normal deformation 6X and a tangential one, 6X* according to [1], [6]

SX* = 0X - " +3X°XE (X! = XL

3)
The intrinsic metric of the hypersurface (g,,) and the metric of spacetime are connected by

(3) 3)
gs = XiXjg,, and g = XiX;g®—n'n".

* Address: Sektion Physik der Friedrich-Schiller-Universitit, DDR-69 Jena, Max-Wien-Platz 1.
! Indices: u,v=1..4;a, b= 1.3,
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If we fix the time coordinate in such a manner that the hypersurfaces X are described by
. _ 4 . 44 —1/2
Z:t=const, n,=nd, (n=(—g") """, (L.
we have still freedom to perform kinemetrical transformations
x* = a®(x" x%),  x* = x¥(xY), (1.2)

i.e. to transform the spatial coordinates on each hypersurface for themselves alone and
to change the parametrisation of the hypersurfaces.

The dynamical problem of field theory consists in the investigation of the behaviour
of the fields Uy, and the canonically conjugate momenta n? prescribed on an initial hyper-
surface X if this hypersurface is deformed through a Riemannian spacetime. The physical
result, i.e. the change of U, and n? caused by the evolution from an initial to a final
hypersurface, must be independent of the special sequence of hypersurfaces between the
initial and final ones. From this principle of “path independence” of deformations in [1]
and [6] the following Poisson brackets have been derived for fields the Lagrangian of which
is of the form

‘zj = g(Uﬂs UQ|a" guv): (13)
[7(x), 7(®] = [7°(x0)+ T (D)]8x, ), (L.42)
LT ux), THR)] = T ()0(x, X)+T y(x)8)x, %), (1.4b)

(1.4c)

[7x), T(®] = T (x)8(x, %)+ 2[ 69‘(2)] '
T

08as(x)

The validity of these Poisson brackets expresses the consistency of field dynamics and
hypersurface deformations. The symbols used in (1.4) are constructed from the energy
momentum tensor as follows:

®
T =T, T.=X'Ty Tu=|g T

with

® 2 0F
f = Tv BY e o e —
u g Tyn, and T =

g 08y

These Poisson brackets play such a central role in the whole theory that we can postulate
according to Schwinger [5]: 7 and 7, are to be constructed from the fields and the canonic-
ally conjugate momenta in such a way that the relations (1.4) are fulfilled. This must be
valid for fields the Lagrangian of which has a more complicated structure than (1.3),
too. An example is the Dirac field the Lagrangian of which contains derivatives of the
metric tensor. In what follows we intend to determine the correct dependence of 7 and 7,
from the canonically conjugate variables of the Dirac field.



187

2. Elements of the kinemetrically invariant Dirac theory

In [2] we formulated the Dirac theory with the aid of kinemetrical invariants, i.e.
quantities which are invariant under kinemetrical transformations (1.2). We got the follow-
ing main results:

a) The suitably defined spatial and time derivatives of the Dirac matrices are not
covariantly constant in a kinemetrically invariant manner, explicitly

Yajjp = —)’Kab (213)
n[a (31)’
£y, = — - Pt Kb (2.1b)
@)

Yjae= —7 Kab (21(:)

nta (33
£y = — == (2.1d)

n

In these formulae the symbols ““|[” and £ = — £ are used for spatial and time derivatives,

n#

respectively, the application of which to kinemetrical invariants generates kinemetrical
invariants again (concerning the more detailed definition see [2]). Moreover the relation
£g., = 2K,, (extrinsic curvature of the hypersurface) is valid and the abbreviations

3) 3)

# and "= g%y,

y-:—nuy

are used. If we construct the y, from the constant Dirac matrices y,,, of the Minkowski
spacetime with the aid of tetrad fields %",

= ™
Yp - )“uv Y(\')’

and fix the tetrad fields according to the choice (1.1) of the coordinate system in such
a way that

(4) (a)p
Ay’ =Ny, A =0

holds, we get for the bispinorial connexion coefficients the expressions

(31),
I,=37YK, (2.2a)

n. 3
[=nT, =210y, (2.2b)
n
b) From the Lagrangian

® hel ) mgC _ @ _ mec _
& = —n g5 |? vwi;a+v£w+7w |\ Play +(£w)v-—h—w pl (23
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the kinemetrically invariant Dirac equation results in

3 mgc

Y'Yt rfy+ :

p=0 (2.4a)
by the usual variational method. The adjoint Dirac equation is

_ B mge
P ¥+ £y — o = 0, (2.4b)

where the adjoint bispinor is defined by

p = ’Pfﬁ and ﬁ“a = £8=0.

3. The superhamiltonian and the supermomentum of the Dirac field

In order to construct the superhamiltonian and the supermomentum of the Dirac
field such that they fulfil the Poisson brackets (1.4) we start with the components of the
energy momentum tensor [3]

he [®

T==7¢ [Py£y—(£Pyy],
he [® - _
Ta=—7.2 [POY)a—va£9) — @y — (£B)¥],
he [® _ _ _
Ta=="74% [PGav o+ 75912 — (B ¥+ B av) ¥ ]-

To give these expressions the correct structure we accomplish the following manipulations:
a) We express the kinemetrically invariant time derivatives by spatial ones with the
aid of the Dirac equation (2.4).
b) We introduce the canonically conjugate momenta to the field ¢, which from (2.3)
result in

ho|®
n= -2 G.1)

¢) We arrange a maximum symmetry in the fields v, ¢' and the momenta =, ol
(see [4]) and symmetrize products y,y, of Dirac matrices.

d) With the aid of g, = pa+ Ty, Y. = w.— ¢l and (2.2) we substitute kinemetri-
cally invariant spatial derivatives by partial ones.
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Having carried out these manipulations we get

c 3) 3) 3 + 3)
T = [m PPl WY Y+ vy ¥R —may vy

2
Hge 4 ¢ + ot
+2,—l(nw—w )+ K(nyp—yint) |, (3.2a)
C .
T o= 5 [mpu—maw+ ylat —ytaf], (3.2b)

o

c
Tw =5 [-ma¥im+ Yl — Yienrant + mera v —Ka(ry—yiah].  (3.2¢)

The expressions (3.2a) and (3.2b) are the superhamiltonian and the supermomentum
for the Dirac field, respectively. By tedious calculations one can show that these ex-
pressions fulfil the Poisson brackets (1.4). It is not possible to give these calculations
explicitly here, for verification we only mention the useful formulae [1]

F(x)0,(x, X)G(X) = F(X)3{x, X)G(X)— F(x)d(x, X)G(x)
and

[6) 3)
£t /g=K_ g,

3)
dy % 3) 3

1 a(b _.c)
=\, = -3 g8 7
agab agbc 2 N

As in the case of the Klein—-Gordon and Maxwell fields the supermomentum (3.2b) of
the Dirac field is independent of the metric of the hypersurface, i.e.

oT,
&gbc

The superhamiltonian indirectly contains the metric of the hypersurface through the

Dirac matrices at one hand and the term being proportional to the extrinsic curvature
3)

K = gk, at the other hand. In the special relativistic case (the hypersurfaces ¢ = const
are flat) the terms proportional to K and K, do not occur in (3.2a, ¢) and the Dirac
matrices are constant.

0.

4. Summary

The main result of this paper is the proof that the superhamiltonian and the super-
momentum given by (3.2a) and (3.2b), respectively, fulfil the Poisson brackets (1.4). This
result is of importance for the consistency of kinematics of hypersurfaces and the dynamics
of the Dirac field in curved spacetime. This example shows that the relation (1.4) is valid
for fields the Lagrangian of which has not the simple structure (1.3), too.
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