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The known Weisskopf-Wigner formula for decay width is derived by the Krélikowski-
Rzewuski formalism. All approximations made in the course of the derivation are listed.

1. Introduction

Krolikowski and Rzewuski have derived general formulae for the quasipotential
governing time evolution of the projection of a state vector onto a selected subspace
in the Hilbert space of states of a system [1]. They are rather complicated and will not be
reproduced here. For a one-dimensional projecting subspace significant simplification
may be achieved. This case is of particular use in the theory of unstable states [2, 3].

We shall demonstrate how the known Weisskopf-Wigner approximate formula for
decay width may be derived from the Krdlikowski-Rzewuski formalism. Our approach
gives a better understanding of the character of approximations one makes when deriv-
ing this formula.

2. Basic definitions

Let P be a projecting operator onto a one-dimensional subspace of the Hilbert space
H# determined by some normalized vector |o) e 3¢

P =la)<al. 2.1)

Assuming that |a) belongs to some orthogonal and complete set of states {|f>} we may
write for the orthogonal complement of P

0=1-P= Y l)<al. 22)
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If a state |y(f)) evolves according the Schrédinger equation with a Hamiltonian H = ot

then the projection onto |x) direction

Iy (0> = (e {alp(t)> = lodp(n)

satisfies the equation [4]
d
i — —h—u(t, t 1) = 0.
[l o o( o)] w(1)

Here we denoted (cf. {4] formulae (2.2), (2.6), (2.7)
h = <alH|a),

d -
o(t, to) = i— In [1—1ia(s, 1o)]
dt
= —i J‘d'ck(t—t)ei('—')h
to

= u(t—1o),

1—ia(t, ty)

where

a(t, to) = | dir(t—1)e ™" = qa(t—t,),
to
r(t) is given by the expansion

(i) = i i(q)"(g* k) ooe (g B) ()

and
k(1) = O(1) (a|PHQe “eH2Q H P|a),

g(t) = —iO(t)e ™
The convolution operation is defined as follows
g = k() = [ drg(t—1)k(x).
to
The time instant #, is such that

Qly(to)> = 0

1 - ia('r, lo)

(2.3)

(2.4)

(2.8)

(2.9)

(2.10)
(2.11)

(2.12)

(2.13)

which means that at this moment the state vector |y(¢)) is directed along |x). In the
course of deriving equation (2.4) it is assumed that y(#,) coincides at ¢, with a solution

of a free equation

w(to) = 9(to),

d
(i = —h) @(t) = 0.

(2.14)

(2.15)
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In the limiting case , — —c0 one gets somewhat simpler formulae since basic quan-
tities loose their dependence on time.
One can show that [4]

lim a(t, ty) = lima(t, ty) = a = —i (2.16)
to— — 0 t— o
while
lim o(t,ty) = lime(t, ty) =» .17
o= — —w

is a time independent quantity.

The quasipotential v is a complex number in general and our task consists of express-
ing it in terms of the Hamiltonian and projecting vector {«). Most important for us here
is the imaginary part of v for which we shall write

i
h+v=m— ~2~y. (2.18)
Hence
y = i(v—v*) (2.19)

is a decay width of the state wy,(¢) calculated from the equation

d
i— —h—v] pu(t) = 0. 2.20
( - —h )wt() (2.20)
Hence we get after integration

[ (D> = e (2.21)

-Taking into account that the initial condition (2.14) approaches in the limit 7, - —o0,
the asymptotic condition

p(O—e(t) -0 for t- —o0, (2.22)

which means that v is switched off adiabatically when time increases, we get from (2.7)

@

v=—ilim [ dtk(z)e""+™, (2.23)

g0 —oo

Using (2.10) we easily find for v the formula

v = {alPHQ h——iHé QHPjoy —inloa|PHQé(h—QHQ)QHP|u). (2.24)
Comparing it with (2.18) we get for v
vy = 2nla|PHQé(h— QHQ)QHP|x). (2.25)

One sees also that y is a nonnegative number as a diagonal element of the nonnegative
operator 6(h— QHQ). It means that the wave function .(¢) obtained from the stationary
equation (2.20) is damped in time.
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In the theory of unstable states one replaces the exact equation (2.4) by the stationary
equation (2.20) supplemented by the same initial condition [4]. It is clearly an approvima-
tion. One may show [4] that both wave functions agree in the limit of increasing time

&

[ — (D)} ~const ™%, &£>0 (2.26)
while for the quasipotential the approximation is even better
|o(t, to)—v| ~ const t™57 1, (2.27)

With this accuracy we may replace v(t, o) by the number v obtained from (2.24).

3. Derivation of the Weisskopf-Wigner formula
Let us assume that the Hamiltonian H is splitted into two parts

1 1 0o

0
H=H+H, H<H, (3.1)

1
where H is responsible for transitions between |a) and other states from . Let {|f)}
(V]

be a complete set of eigenstates of the free Hamiltonian H

0
HIB> = E4l>, E,=h (32

and let our distinguished state |x) belong to this set. Then, according to the Weisskopf-
Wigner theory, we may write approximately [5], [6]
- itH 1 —ixt
{aje” "oy ~ — dxe
2r

-0

r,
(x—h—4)*+112

™
—i -5t
= e 1t(h+A,)e 2y , (3.3)

where the constants I', and 4, are given by the formulae

1 4] 1
I, = (aH3(H—h)H|x, (3.4)
1 g 1
4, = —<a)H 54— Hlad. (3.5)
H—h

We shall derive this result in a systematic way using our formula (2.24). Let us assume
that

o 1
PHQ = PHP = 0. (3.6)
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In this case we have the relations

0 [ 0
PH = HP = PHP = hP, (3.7
1
PHQ = PH, (3.8)
0 ] 0
QHQ = H—PHP, (3.9)

and as a result
1 1
k() = O(1) a|HQe™ ""eQH o)

1 .0 1 1
= O(1) {a|He "™ H|u) + O(H?). (3.10)
Terms containing third and higher powers of the interaction Hamiltonian arise since
1

in general QHQ # 0. This leads to the following formula for the quasipotential

1 1 1 o 1 1
v = (a|H 5 Hlo) — in{a|H8(h— H)H{a) + O(H?)
h—H
i 1
= A,— —2—F,+O(H3) (3.11)
and for the decay width
1
y = i(v—v*) = I',+ O(H?). (3.12)
In the particular case when
1
QHQ =0 (3.13)

we get precisely the Weisskopf-Wigner formula for y since terms containing third and
higher powers of the interaction Hamiltonian vanish.

REFERENCES

[11 W. Krélikowski, J. Rzewuski, Nuovo Cimento 25B, 739 (1975) and references to earlier work
on this subject included there.

[21 W. Garczynski, Phys. Lett. 56A, 434 (1976).

[3} W. Garczyiski, K. Urbanowski, Acta Phys. Pol. B8, 199 (1977).

[4]1 W. Garczynski, K. Urbanowski, Discussion of the Krdlikowski-Rzewuski Equation for Projection
of a State Vector onto One-Dimensional Subspace of Hilbert Space (in press).

[5]1 V. Weisskopf, E. Wigner, Z. Phys. 63, 54 (1930); 65, 18 (1930).

[6] P. A, M. Dirac, The Principles of Quantum Mechanics, Oxford 1947 or A. Messiah, Quantum
Mechanics, Amsterdam 1965.



