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The Additive Quark Model relates A to vector meson production. The predictions of
this model are formulated and compared to the data in a number of reactions involving
vector mesons and A production. In all cases excellent agreement with data has been found.
With the quark model we generalize the vector dominance relation proposed by Cho
and Sakurai to the A case, Experiments agree well with the predictions. Empirically the
predictions appear to be valid also in other reactions like 4, production.

1. Introduction

In the additive quark model (hereafter AQM) of Bialas and Zalewski [1], any hadronic
reaction is described by a sum of all possible combinations of quark-quark or quark-anti-
quark interactions which are possible with the quark content of the external particles. In this
paper we want to discuss the predictions of the AQM in the special case of reactions
involving a A. Since the spin of the A is greater than %, the number of independent quark
amplitudes is less than the number of independent helicity amplitudes for the original
reaction. Therefore the helicity amplitudes have to satisfy certain constraints, which are
usually called Class A relations [1]. These constraints imply that a pA vertex, as it occurs
in the reaction

ap » bA*™ (1.1
with arbitrary particles ¢ and b, has the same spin structure as the reaction
arx — bV (1.2)

where J denotes a vector meson. If one identifies this #¥7 vertex with real vertices 7o
or nw depending on the internal quantum numbers, one gets relations between A production
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and ¥V production amplitudes (so called Class B relations). These Class A and B predictions
are discussed in Section 2 and compared with recent data.

The dynamical assumption that the basic quark-quark interaction conserves helicity
leads to helicity conservation for the whole reaction (Class C predictions), However,
it has been argued [2] that in a relativistic version of the quark model they cannot be
valid. Empirically, these Class C relations have been found incompatible with experiment [3].
Nevertheless it is interesting to see whether reactions (1.1) satisfy more constraints than
those given by Class A. One possible approach is that of Cho and Sakurai [4]. From the
requirement that the p production amplitudes in 7N — 9N should extrapolate smoothly
to the corresponding ones in photoproduction of 7, they derived relations between the
fongitudinal and transverse g production amplitudes. These relations we call vector meson
dominance relations (VMDR). In Section 3 we generalize these ideas to the following
special case of reaction (1.1)

ap - VA** (1.3)

under the assumption that the A*+p vertex satisfies the Class A constraints. In the deri-
vation of these VMDR, only a smooth dependence of the production amplitudes on the
vector meson mass is involved, but not the actual existence of a massless vector meson.
Since the AQM relates the Ap vertex to a ¥ vertex, we can apply the ideas of Ref. [4]
to the Ap vertex in reaction (1.3). Finally we compare the experimental predictions of
the VMDR with the data on reactions of the type (1.3).

One important consequence of the AQM is the reduction in the number of independent
amplitudes for reactions (1.1) or (1.3), which allows one to perform an amplitude analysis
for these reactions even in the case of a bubble chamber experiment with limited statistics
and no information about the polarization of the nucleons. Various possibilities are dis-
cussed in Section 4. The remainder of the paper is devoted to applications of the VMDR
in other reactions than (1.3).

Cho et al. [4] compared the VMDR for the reaction n~p -» ¢%°n with the data before
the accurate data of the CERN-Munich group [5] became available. The purpose of
Section 5 is to show that the new data confirm these VMDR.

As the example of the A reaction (1.3) shows, VMDR are not confined to vector
mesons. One can go even further and demand the same relations for the production ampli-
tudes for axial vector meson states; for example, 4; production in the reaction
n7p = nowtn-p. By A; we mean a s-wave mp state in the 3z system, but not necessarily
a resonance. The experimentally observed spin structure of this reaction is sufficiently
simple that the corresponding VMDR leads to helicity conservation for the 4, along
a direction between the s-channel helicity (SCH) and the -channel helicity (TCH) direction
(Section 6). If helicity conservation is true for this diffractively produced system, it should
also be observed in Q or N* production. This we investigate in the case of reaction
pp — (T*n)p.

The notation for spins and momenta of the particles in the quasi two body reaction
ab - cd will be the same throughout the paper (see Fig. 1). The four momenta of particle
a(b, c, d) are denoted by p(p’, k, k') and their masses by m(m’, M, M'). If particle b(c, d)
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carries spin, the helicity is denoted by r,(r, r'). In many cases c(d) will be a resonance
decaying into two particles. The unit vector of the three momentum of the decay particle
in the ¢(d) rest frame is described by g(g’). If ¢ is a @ — 37, § denotes the normal to the
3n plane. In the decay A+t — pzt the proton carries helicity y. The abbreviations

Momentum p Momentum k
Mass m g ¢ Moss M
Momentum p' b d Momentum k
Moss Mass M’
helicity  rp helicity r’

Fig. 1. Notation for quasi two body reaction

P=p'+k' and P’ = k+p will be useful. Throughout the paper the SCH coordinate
system will be used, unless stated otherwise. As usual s is the total energy squared
and ¢ the momentum transfer ¢+ = (p—k’)%. We will always assume that [t/s| < 1.

2. Quark model predictions for A reactions

In this section we want to sketch the derivation of Class A and B predictions of the
AQM for reactions involving a pA vertex. The we consider the special case of associated
vector meson-A productions. Finally we compare the Class A and B predictions with
the data.

The most general two body reaction involving a A reads as

ap - cA*t . 2.1)
1._> n+p

Particles a and ¢ will be specified later on. The amplitude for the process (2.1), including
the A decay, can be writien as

1 .
Frp=— E H, . - DY@, (2.2)
-

where H, , denotes the amplitudes for the incoming proton with helicity r, and the
outgoing A with helicity r’; the D function describes the A decay into ntp decay depending
on the helicity y of the decay proton and its momentum direction q in the A rest frame.
For reasons which will be clear later on, we introduce the relative proton-A spin / = 1, 2
and its magnetic quantum number, m, is equal to the helicity flip

241 N
H,, = Z _4i G rmi3ry - By 2.3)

For application, helicity amplitudes are not the best ones to use because of the constraints
due to parity conservation. The following linear combinations of H, are eigenamplitudes
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of the parity operator P times a rotation around the normal to the production plane with
angle =:

T, = Y ef(m)H 1, (24)

U, = Z £f(m)f~1 2m> (2.5)
Im<1

vV, = | 1212 'Pi(m)gz»p (2.6)

where the coefficients ¢ and y are given by

m_ _ (m) m
go(m) = Opo, €Y = :/‘Eél'”l:l’ €7 = — \/_I_Z’ 2.7

i
Py = 7‘56|m|,2’ ™

-— 2.8
5 \/2 23)
The phases in Eq. (2.7) have been chosen such that the vector T= (T-, T4, T,) transforms
under rotations like an ordinary vector. Parity conservation implies that 7', Uy, U-, Vi
arerelated to natural and Ty, 7-, U+, V—-to unnatural exchange. The cross section, including
the A decay, for not observing any proton polarization is given by

W=31YI|F, (2.9)

rp?

and the normalization factors in Egs (2.2) and (2.3) are chosen such that the A-production
cross section reads as

Wo = [ d*q'W = 3 (TP +UL+ViP). (2.10)

As explained in Ref. [6], the relative spin / is equivalent to the spin of the two inter-
acting quarks in the p and A. This spin cannot be bigger than 1. Therefore the Class A
prediction of AQM in this case is

H,,=0, or U;=V=0. (2.11)

Prediction (2.11) is not limited to the quark model. Any interaction of basically vector
type will involve only H,,, as the dipole model of Ref. [7]. For pure natural exchange,
the Stodolsky-Sakurai model [8] predicts only T« being nonzero. To see the experimental
consequences from Eq. (2.11) we write the cross section (2.9) in terms of the quark model
amplitudes T;

1 R
W=— E TANG)T (2.12)
47

where the matrix 4 is given by

A = 23141+ 0 (2.13)
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The matrix 4 in the more complicated case of nonvanishing U amplitudes is given in the
Appendix. For the remainder of the paper, we will always assume that the Ap coupling
obeys the AQM. This assumption allows us to express the amplitudes in terms of measur-
able moments of the cross section W:

Re TLT* = [ d°q'(53:qx~% Sx)W. (2.14)

In order to compare the AQM predictions with experiment, we now specify particles a
to be a m and c to be a g. By ¢ we mean a P-wave resonance state plus an S-wave contri-
bution, as it occurs in the reaction

ntpontnT At (2.15)

with the dipion mass M in the ¢ mass band. To obtain the amplitudes for reaction (2.15)
we have to expand the general production amplitude T; on the meson side into znS and P

waves
1 = oA
T‘i 1 3 Pi,,q,,+5'i, (2.16)
\/47t Z \/

where Py, describes the P wave and S; the S-wave emission of the 7 pair; g, = (4-, 4+, do)
corresponds to the unit vector of 7+ momentum in the nn rest frame. Py, are related to
the helicity amplitudes H,,, of p production in ntp — g°A*+ in the same way as T; are
related to the H,, amplitudes for the A in Eq. (2.4):

Pin = Z siR*(m)af(r)Hlm,r' (2'17)

The joint decay angular distribution for reaction (2.15) is obtained by

A A,

1 o enn - A
W(q.q") = @n? E A3 (34 mdnPinPin+ SiSE +/3 @u(ST P+ SiPR)].  (2.18)
ik

The matrix A; is given by (2.13). The following moments of this distribution allow the
determination of the various interference terms:

Wi = § 4°4d°q'(50i9k~% 0u) (5 Gudn—2% Sn) W, (2.19)
Wim = 5‘12‘55{2‘}’\/3 3n(53:31—% Ou0)- (2.20)
The explicit relation between those moments and the amplitudes reads as follows:
Wimn =+ R€ (PinPioy+ PiuPim) +3 0,0 Re SiSE, (2.21)
Wim = Re (S;Pp+ SiPh). (2.22)

The simplicity of Eqs (2.21) and (2.22) compared to the usual complicated formalism [9]
makes it very easy to extract the amplitudes from the measurable moments. The number
of nonzero moments and amplitudes is restricted by parity. An even number of + indices
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has to occur in the amplitudes P,,, S,, and the moments (2.21) and (2.22). Therefore,
only one amplitude with natural exchange occurs, P44, four P-wave unnatural exchange
amplitudes Pgg, Po—, P—o, P-- and two S-wave amplitudes with unnatural exchange S,
and S-. In addition the moments have to be symmetric in both ik and mmn indices. This
leaves us with 20 independent moments of the type (2.21) and 10 S-P interference moments
(2.22). This means 17 constraints among the moments, if AQM holds. There are two
types of constraints: equality of moduli lead to linear, equality of phases lead to nonlinear
constraints between the moments in Eqs (2.19), (2.20). The linear ones we can visualize
in the following way: moments with natural exchange at the A vertex and unnatural
exchange at the meson vertex must vanish by parity conservation. Therefore we get

WerooWo = WasoWo = Wer o _Wo =0, (2.232)
W+ +’0W0 = W+ +'_W70 = 0- (2.23b)

To get a common scale we have divided the moments by the total intensity W,. The ex-
perimental moments in the g region for reaction (2.15) are shown as a function of _/~1
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Fig. 2. Normalized moments from Eqs (2.23) for ntp — mtn~At++ at 7 GeV/c {10] in the g region

(0.70 < My, < 0.86 GeV) as a function of \/: in the SCH system. Quark model Class A relations
predict them to be zero

in Fig. 2 for the 7 GeV/c data of Ref. [10]. The agreement with the AQM predictions
(2.23) is very good. The same investigation can be done for

K*'p—> K'n " A** (2.24)
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in the K* region. The AQM prediction are again in good agreement with the data at
12 GeV/c [11] as Fig. 3 shows. We can replace the n7 state in reaction (2.15) by a 3z state
in the w region. Since there is little background [12, 13] under the w, we are studying the
reaction

ntp > wA* Y. (2.25)
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Fig. 3. Normalized moments from Eqgs (2.23) for K*p — K¥n~A++ at 12 GeV/c [11] in the K*° region

(0.84 < Mg, < 0.94 GeV) as function of V' _tin the SCH system. Quark model Class A relations predict
them to be zero

—e—(
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Besides the constraints (2.23a), we can obtain additional constraints by projecting out
natural exchange at the wn vertex. The same argument as before leads to

Woo,+ +/Wo = Wo-,+ +/Wo = W——,++/Wo =0 (2-2?

Both the moments (2.23a) and (2.26) are shown in Fig. 4 for reaction (2.25) as a function
of \/—1. The data are taken from Ref. [12] at 7 GeV/c. The agreement with the AQM
predictions is excellent.

These comparisons tell us that the quark model coupling for the Ap vertex are sub-
stantiated by the data for associated production of vector mesons and A. A meaningful
test of the nonlinear constraints requires much higher statistics than available in present
experiments.
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Now we turn to the so called Class B predictions of the AQM. They identify the A
in reaction (2.15) with real vector mesons. Therefore the vector meson A production
amplitudes P;, should be symmetric

Pin = Pni' (2.27)
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Fig. 4. Normalized moments from Egs (2.23a) and (2.26) for wtp — wA++ at 7 GeV/c [12] as function of
V¢ in the SCH system. Quark model Class A relations predict them to be zero

Due to the different masses of g and A, (2.27) can hold only in one reference frame. According
to Ref. [14] Eq. (2.27) should be used in the TCH frame, which has been verified experi-
mentally at 3.9 GeV/c [3]. Due to this model dependence we want to make only a few
tests of the Class B relations. Even if Eq. (2.27) holds, the single A and ¢ décay moments
are not the same, as one can see from the different factors 5 and 5/2 in front of the quadratic
terms in g and ¢’ in Eq. (2.19). These terms give rise to ordinary L = 2 decay moments
{Y%>. From the symmetry of P we get, therefore, a relation between the single A and ¢
decay moments

(Yiade = X5, (2.28)

These decay moments in the TCH system for the three reactions ntp — wA*+, +p — A+
at 7 GeV/c (10, 12}, and K*+p — K+®A++ [11] at 12 GeV/c are shown in Figs 5 and 6 as
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Fig. 5. Comparison of vector meson and A decay moments <Y}t in the TCH system as function of vt
(o-data from Ref. [10], K*-data from Ref. [11}), Quark model Class B predicts <Y31>y = 2<¥3>a
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Fig. 6. Comparison of w and A TCH decay moments (Y’;’,) in the reaction n*p — wA*+ at 7 GeV/c [12]
as function V' —t. Quark model Class B relations predict <YM, = 2<¥YM>%
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a function of «/—¢. The data indicate that the Class B prediction (2.28) is in reasonable
agreement with experiment. Equation (2.28) is not restricted to cases where ¢ and A*++
are produced in the same reaction. Comparing the two reactions n-p — ¢°n and pp — A*n,
the same relation (2.28) should hold provided the production mechanism is the same.
Both reactions are dominated by absorptive 7 exchange at low |¢| and natural exchange
at high |¢] [5, 16]; therefore a common production mechanism seems to be a reasonable

T T T T T T T T T T N A N L*
E o K moments (pp+&) E\!‘. o ! ! ¢ 104
O.12 [
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Fig. 7. Comparison of ¢ TCH decay moments in 7p — ¢°n and A++ decay TCH moments in pp — A+n

at 17 GeV/c [5, 16] as function of V' _t. The o-moments are represented by the solid lines. Quark model
Class B relations predict <¥Yi>a = ¥<¥3ir,

assumption. Both reactions have been measured at 17 GeV/c by a CERN-MUNICH-
-UCLA collaboration [5, 16]. The comparison of the A moments in pp — At and p
moments in 7tp — ¢°n as function of /—¢ (Fig. 7) indicates good agreement with the
Class B prediction (2.28) also in this case. Recently Field [17] compared K* production
K+ — K*% at 6 GeV/c with pp — A**+n data with a polarized beam and found the Class B
relation in good agreement with the data.

3. Vector dominance relation of Cho and Sakurai

Cho and Sakurai [4] derived relations for the g-production amplitudes for the reaction
77p~ ¢’n (3.1)

from the requirement that the o couples like a photon to a conserved current. We will
give a slightly different derivation for the simple case that the nucleons in reaction (3.1)
are spinless particles of opposite parity and generalize these ideas to the more complicated
case of

p - VA™ ™, (3.2)

where ¥V stands for w or g. The original reaction (3.1) will be discussed in the next section.
Since the AQM relates a pA vertex in reaction (3.2) to a mg vertex, we can apply this
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formalism also to the A. Finally we compare the prediction for reaction (3.2) with the
data.
The amplitude F for reaction (3.1) with spinless nucleons including the decay p — nn

are given by
1 .‘
F=-——= Y 3Pg, (3.3)
Vdar Z

n

where q denotes the decay 7 direction in the o rest frame. Parity conservation requires
Py = 0. The vector P is in the same way related to the helicity amplitudes as before in
Eq. (2.4). Invariant amplitudes are introduced by

P, =Y ex"(Medni* = tu"- (3.4)

The four vector g,(r) is uniquely determined by ¢,k* = 0 (k, is the ¢ momentum) and
gy = ¢rinthe p rest frame. By adding terms ~k, to j*, we can always achieve the conser-
vation law

k,j* = 0. (3.5)

Using (3.5) the explicit relation between the amplitudes P and the “current” j* becomes
very simple

o M\ .. &
P=j—{1——1Kkk-j) (3.6)
ko
where M denotes the vector meson mass. In the rest frame Eq. (3.6) reduces to P = 7.
In a general reference frame it reflects the spin rotation. For massless vector mesons only
transverse components of j can contribute to P. Since j, is a four vector, it can be
decomposed into scalar amplitudes 4 and B by:

Ju = 2C, A+ K, B), 3.7
with
t—m?
C,=p,+ 5 P,~%k, (3.8)
and
M2
K, = 5 P,~%k, (3.9)

These linear combinations of the particle momenta (see Fig. 1) are chosen such that Eq. (2.5)
is satisfied up to O(1/s) terms. Inserting j, into Eq. (3.6) and choosing the SCH-direction
as z-axis, we find for P, and P-

P, = M(A—B), (3.10)

P_=—2vV-tA. (3.11)
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The crucial difference between the amplitudes 4 and B is that B enters with K, into j,,
which is explicitly M? dependent. B does not give any contribution to production of a mass-
less vector particle \y). Presence of a significant B term would make any relation between ¢
and y production meaningless. To impose a smooth transition between y and g production
we require B = 0. This means that P, and P- must satisfy the relation

M

Py = — ———
0 N

P_. (3.12)

Due to the derivation, we call Eq. (3.12) and the analogous relations in other cases vector
meson dominance relations (VMDR). Equation (3.12) has been derived in Ref. [4] by
writing j, as a linear combination of the external momenta and imposing the conser-
vation law (3.5) as an identity in M. This masks, however, the important omission of any M?
dependent term ~ K, in j,. Note that Eq. (3.5) can always be satisfied by adding appropriate
terms ~k, to j,. An obvious_consequence of the VMDR is the following. Choosing as
quantization axis the vector C in the V rest frame,-only P, can be nonzero. This means
helicity conservation along C. This direction lies between the TCH direction p and the
SCH direction P forming an angle § = arc tg (2,/—t/M) with . Therefore the Donohue-
Hogaasen angle [18] is predicted to equal 8. As we will see, this helicity conservation holds
only in this simpie case where we have pure unnatural exchange. It will be true in general
if only one amplitude contributes.

Before we can apply the same idea to reaction (3.2), we have to find the analogue of
the AQM coupling (2.4) for the invariant amplitudes for reaction (3.2). Ignoring for the
moment the V-meson spin, the helicity amplitudes H, , for the Ap vertex are given in
the Rarita-Schwinger representation [19]:

H, . = u, kK, ) J*u(p’, r§). (3.13)

The AQM for the invariant amplitudes means that J, does not depend on
any y-matrices connecting the A spinor #, and the proton spinor u. To see this, we insert
the explicit form of u, in terms of a direct product of spin 4 and 1 representations

u, = Y, <t almi v de,(m, Ku(e, k) (3.14)

into Eq. (3.13). By taking J, outside the spinor product and comparing this expression
with (2.3) we find

Hip = 4V (m, + M) =t X(m, k')J*, (3.15)

H,,=0. (3.16)

Absorbing the kinematical factor in Eq. (3.15) into the definition of J,,, we see that the
relation of the AQM between the Ap amplitudes H, , and an effective vector meson
production amplitude H,, holds also for the invariant amplitudes. With the help of Eq.

(3.15) we can now express the production amplitudes P, of Section 2 for reaction (3.2)
in terms of invariant amplitudes

Prn = oK) (k)T*. (317
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The tensors y are given by Eqs (3.4) and (3.6). The most general tensor J** which satisfies
the conservation laws k,J** = k,J"" = 0 on both vertices is obtained by

Jﬂv — (gy.v_ E k/ukv) CA+4C111CVAU_ 3 8!‘7'13-2}-38\'”1“2763
s S

kj ke, Py K kb, P, An + 4K C*B, +4K™K"B,. (3.18)

The vectors C, and K, are given by Egs (3.8), (3.9) and C’, K’ are the analogous vectors
for the A side:

w2
Cu = ppt

P,—%k, (3.19)

2
K,=—P,~%+k, (3.20)
25
The physical meaning of the various terms in Eq. (3.18) can be read off from the connections
between the scalar amplitudes and the SCH amplitudes:

P,. = C,—4tAy, (3.21)
P__ = —C,—4tdy (3.22)

Py = —2M' —t(4y—B)), (3.23)
P_g = —2M =t Ay, (3.24)

Poo = MM'(Ay— B, +B,). (3.25)

C,4 contributes to both natural and unnatural exchange spin flip amplitudes and can be
finite at ¢ = 0, It is therefore dominated by Regge cut contributions. Ay appears only
in P, which means it describes 4, exchange. 4y, B, and B, describe the various unnatural
exchanges. The vector dominance arguments discussed before for the vector meson in
reaction (3.2) require B, = 0 in order to forbid the M dependent term ~ K|, in (3.18).
This is equivalent to the VMDR for the helicity amplitudes

—_
2N —t
= T Foo

P, = (3.26)

These VMDR are a consequence of a smoothness property of J* and j* for reaction
(3.1) but do not necessarily require the existence of a massless vector meson. Therefore

we can postulate the same smoothness property for the A as far as the M’ dependence

concerns. This leads to the requirement of B, = 0 and to the following VMDR for the
Ap side:

2=t

P
M/ 00

P, = (327



222

The VMDR (3.26) and (3.27) do not mean helicity conservation along C or C’, since
C4 and A4, will not be zero; however, (3.26) and (3.27) lead to constraints for the moments
Wi,mn Which can be tested experimentally. Before doing so we want to make a comment
on the possible validity of the VMDR (3.27) in = exchange dominated reactions. The
n exchange pole term gives the following expression for J,,

, G
Jaw = 4p,p, —5——. (3.28)

m2—t

Using Eqs (3.8) and (3.19) to express p and p’ in terms of our vectors C, C’, Kand K’
we see that, due to m'2 # m2, B, must contain the n-pole and cannot be neglected. Therefore
we expect both VMDR (3.26) and (3.27) to be valid only for the reaction

atp - AT, 3.29
where m-exchange is impossible. For the reaction
ntp = o°ATT (3.30)

only (3.26) holds and for K*p — K*A++ none of the two relations will be valid, since
in this case both B, and B, contain n-pole contributions.

T T T T T I

010} (d) wp—mtr AT -
0.0 i -
—o.|o—} (C’{ } } } i
oo

ol b 1
1

-olo b ™ i
o‘noN— T
00 —4-3 = l [

151
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Fig. 8. Normalized moments from Egs (3.31) and (3.32) for atp — p°At+ at 7 GeV/c [10] as function of

\/—_t. a), b), ©) and d) correspond to Eqs (3.31a~c) and (3.32). The VMDR for ¢ predicts them to be zero
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To test the VMDR experimentally we first investigate the o VMDR (3.26). Inserting
the relation (3.26) into the moments (2.18) leads as before in the test of Class A relations
to linear and nonlinear constraints. We consider only the following three linear constraints
among the normalized moments

Wos,—s+aWos 041/ Wo =0, (3.31a)
[Woo,0- +2(Woo,00 — Woo,+ +)1/Wo = 0, (3.31b)
[Woo,- - +aWoo,0- +Woo,+ +1/Wo = 0, (3.31¢)

where o = 2\/_-——t/M. Note that for reaction (3.30), Wyo, ++ is not zero due to the
S-wave background under the p. The S-P interference moments have to satisfy the
following constraint if Eq. (3.26) holds

[Woo, - +aWo0,0]/Wo = 0. (3.32)

The experimental values for the four moments (3.31) and (3.32) for reaction (3.30) at
7 GeV/e [10] in the SCH system are shown as functions of /—1 in Fig. 8. This indicates
that VMDR are in reasonable agreement with the data. For the w reaction (3.29), the
Eq. (3.31) holds with W, ++ = 0. Imposing in addition the VMDR (3.27) for the Aside, we

0.4

T 1 T T T T T T T T
0.2'1 T L mpswa™ ]
§ } (o} (b}
0.0 }» —+ + -t é ii{? T T T T
0.2 f T 1 .
] ;J; ~ T
l c {d) (e)
0.0 l§ % I* *il t %rifE %T
-o.2} | + +_
+ ™~ 4 ot
0.2} % T J-l []
0.0 ‘*4;: :+j~ IYIJ,* :Ie L:éaé‘,{e
r? I R |

-0.2 —T + T f .
Il 1 Il L !

-0.4 S S (O T T B
00 04 08 0O 04 08 0O 04 08 1.2

Fig. 9. Normalized moments from Egs (3.31) and (3.33) for «'p — wA++ at 7 GeV/c [12] as function of

‘/:. a) through h) correspond to Eqgs (3.33b), (3.31¢), (3.33d), (3.33¢), (3.31b), (3.33¢), (3.31a), and (3.33a).
VMDR for @ and A predict them to be zero
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find five more linear constraints among the moments

[Wo - 00+ Weo.00]/ Wo = 0, (3.33a)
[W-_ o0+ Wo_ o]/ Wo = 0, (3.33b)
[We s 08 +0 Wos o0u/Wo = 0, (3.330)
(Wo- - — ' Weg - - +2aWy_o_1/W, = 0, (3.33d)
W oo —aWo_ g0 +20' Wy_ o_]/We = 0, (3.33¢)

where o’ = 2\/—#/M’. In Fig. 9 we show the linear combinations of the moments as in
Egs (3.31) and (3.32) as functions of \/: for ntp - wAt+ at 7 GeV/c [10] in the SCH
coordinate system. From the reasonable agreement we conclude that the VMDR holds
also for the A in reaction (3.29). From the 12 amplitudes allowed by parity conservation
AQM predicts only five nonzero. The additional VMDR reduce this number to three.

TABLE 1
Number of amplitudes and constraints
Meson state X P-wave S-wave Measure- Linear Nonlinear
present Assumptions amplitodes | amplitudes ments constraints | constraints
P — 12 — 20 — —
S+P — 12 4 30 — —
P Vi=0 9 — 20 — 3
S+P Vi=0 9 2 30 —_ 9
P Ui=Vi=0 5 — 20 6 5
S+P Ui=Vi=0 5 2 30 5 12
P Ui=V;=0 3 — 20 14 1
+ VMDR(3.26)
(3.27)
S+P U=V=0 4 2 30 9 10
+VMDR(3.26)

In Table 1 we list the number of independent amplitudes in the case of reactions
(3.29) and (3.30) together with the number of measurable moments, linear and non-
linear constraints, if one imposes the AQM and/or the VMDR.

4. ©p — 0°n revisited
The VMDR have been derived originally in Ref. [4] for the reaction
n7p - o%n. 4.1)

We want to repeat the treatment here for two reasons. First, there are more amplitude
analyses done for reaction (4.1) which clearly confirms the VMDR, and, second, there
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is an important difference between our treatment and that of Ref. [4]. Writing the helicity
amplitudes for reaction (4.1) in terms of invariant amplitudes, we can omit all combina-
tions leading to spin no flip at the pn vertex for unnatural exchange [21]. With this restric-
tion the helicity amplitudes H, ., in the SCH system can be decomposed as

Hr,,r’.r = Gnnpa(rp)'ysjnu(r’)er(r) (42)
with

J, = 2C,A,+2K,B+0,k’Cy+ —= ,,m“k‘* PP AL+ (my* - pM) 4N,  (4.3)

\/_ £
where A, and B are related to n-exchange C 4 corresponds to the n-cut (the poor man’s
absorption model [21] sets C, = 1) and AR(4RN) to the helicity flip (no flip) natural exchange
contribution from A, exchange. We use the same vectors C, K as defined in Eq. (3.8) and
(3.9) to ensure the validity of the conservation law k,J* = 0. In principle the Dirac equa-
tion for u and u can be used to express the A% in terms of A,, Band C4 as done in Ref. [2],
but this will lead to a VMDR which is incompatible with experiment.

The restrictions imposed by the arguments of Cho and Sakurai {2] lead to B =0.
Since we use a linearly dependent set of scalar amplitudes, this has no consequence for
the helicity amplitudes. Nevertheless we can make the following qualitative comparison.
At [t} < 0.1 GeV? A, exchange can be neglected compared to n-exchange. With B =0
one obtains from (4.2) and (4.3) for the r = 0 helicity amplitude

Hypo = =V =t e—e= 4,3, (4.4)
oo \/Mz——4t "
The usual n-pole exchange amplitude is given by
1
oo = =N =16, c0S fg —— F(), (4.5)
m2

L

where 7, is the crossing angle between SCH and t-channel helicity (TCH) system with

COoS Yy = — (4.6)

m2—1t\?
m-" —4
M

and F(t) a form factor. Using the form (4.4) for n-exchange is equivalent to replacing the
numerator in the crossing angle (4.6) by its value at the n-pole (the additional weak #-depen-
dence in the denominator can be absorbed into the form factor F(t)). This approxima-
tion has been made by al/ amplitude analyses [22] done on the CERN-Munich data [5],
mainly because there is no experimental evidence for a zero at |t| = M2—mZinther = 0
amplitude. Another consequence of using Eq. (4.3) for = exchange is that B = 0. This
and C4 ~ 1leads to a vanishing (¥32) in the TCH system, which is in good agreement
with the data (see Fig.”7). All these comparisons have to remain qualitative since they
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depend on neglecting the 4, exchange amplitudes, which are dominant for {t] ~ 0.5 GeVZ2,
This was not known at the time, when Cho and Sakurai derived the VMDR for reaction
(4.1). This relation is obtained by requiring B = 4% = 0. Then the helicity amplitudes
become linearly dependent, which gives the VMDR of Ref. [4]:

M
H%_%’o = — \/__. H% —%,—1* (47}

However, equality of r = 0 and r = 1 amplitudes is incompatible with the known domi-
nance of natural exchange for [¢| > 0.3 GeV2. Even if the original VMDR of Ref. [4]
turns out to be incorrect, its weaker form B = 0 explains why in cos y, for the = exchange
in Eq. (4.5) the factor M?+¢—m? has to be replaced by its value at the pole ¢ = m2.
Finally we mention that B = 0 is required by the so called electric Born term model [4]
(which is a special solution of the VMDR (4.7)) and by some dual models [23].

5. Application to amplitude analyses

As Table I shows, an amplitude analysis for a reaction like wtp — VA++ cannot be
done without polarized target experiments. The least restrictive assumption for such an
analysis is the neglection of the double flip amplitudes ¥; (in the notation of Section 2)
at the A vertex, which leads to a constraint fit. Usual statistics of bubble chamber experi-
ments still require more assumptions. In this case the AQM assumption U =¥ = 0
may be used. In the analysis of reaction ntp — wd+*+ at 3.9 GeVjc [24] some nonquark
model amplitudes have been claimed, which contradicts our finding. In Ref. [27] AQM
has been used to determine the cross section for the S-wave under the ¢° and K* in re-
actions 7tp — @°A++and K*p — K*°At++. This cross section turned out to be in reasonable
agreement with the most recent nn phase shift analysis [16]. Together with VMDR for
the g the phase between Py, and P++ has been determined [25].

For an amplitude analysis of the reaction

ntp -t TaATT 5.1
both in the w region and for high 37z masses using V; = 0 we refer to future publications
[13, 27]. An application to inclusive reactions as

ntp —» XA*Y (5.2)

seems to me especially worthwhile to pursue. Extrapolating the cross section for reaction
(5.2) to t = m?2 gives a measurement of the 77 total cross section. However, in general
the background makes this rather unreliable. The background can be (hopefuily) reduced
under the assumption of the AQM, if one extrapolates the A moments (2.14) in the TCH
system:

ngl Z [d*q’ (5"2—:;-)a(n+p - XATH). (5.3)

(mi—1)* |T,|? at the pole is related to the n cross section and (mZ—r)? |T|2 should extra-
polate to zero which serves as a check of the method.
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6. Vector meson dominance relations and helicity conservation

In the simple case of the reaction studied in Section 3, we established helicity con-
servation along ¢ for the vector meson, if the VMDR is valid. Presence of other exchange
mechanisms prevent this from being true as a general rule. The following reaction is
experimentally known to be particularly simple

ntp - Afp. 6.1

By AT we mean a 1+ S-wave state between g%, but not necessarily a resonance. The data
show [28, 29] that this state is produced only by natural exchange and by spin coherent
nucleon amplitudes. So the protons can be considered as scalar particles, and the formalism
of the example in Section 3 can be applied (reversing the role of unnatural and natural
exchange). If the arguments for the current j, can be also generalized to the axial current
involved in reaction (6.1), we predict helicity conservation along direction ¢. That means
the experimental values of the Donahue-Hogaasen angle [18] should coincide with
the angle 6 between TCH direction p and ¢ given by

2 \/: m2—t
8 = arctg Ma, ML —3i—m? | (6.2)

The measured angles at 40 GeV/c from Ref. [28] are displayed in Fig. 10 for two
intervals of the 37 mass M3,. In view of the many assumptions entering the experimental
analysis we consider the agreement as surprisingly good. In contrast to the reactions
studied in the preceding sections, reaction (6.1) is dominated by Pomeron exchange. If
this helicity conservation is not accidental, the same should be true for other Pomeron
exchange reactions, for example pp — (z™n)p. Due to the limited statistics available and

mz . =1.0-1.2 GeV mz,=1.2-1.4 GeV
1 l I I
— =
C
C
! l il 1 l |
ol 02z 0.3 0.1 02 0.3

Momentum transfer [(GeV/c)?]

Fig. 10. Donohue-Hogaasen angle relative to the TCH system for 4; production in a7p — 7' p at
40 GeV/c [28] as function of —¢ in two 3z mass intervals. The data represent the result of a partial wave
analysis and the curve the prediction of VMDR for axial vector mesons
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the increased spin complication, no amplitude analysis has yet been performed. However,
helicity conservation along a certain axis should result in a flat distribution in the cor-
responding vy angle. This v distribution for the data on pp — n*np at 24 GeV/c [30]
integrated over M+, << 1.7 GeV and |t,,]| < 0.3 GeV? is shown in Fig. 11 for the three -

pp—* (n7w*)p at 24 GeV/c

Mp,+<1.7 GeV Itop [<0.3 Gev2
TTTTTTT TTTTTTT1 T

cs THS

NeveMs SHS

Nevon?s /15 ¢

L [ [ N Lo 1
-180 -90 C 90 180 -18C -9C O 90 180 -180 -90 © 90 180

#. (deg) ¢, (deq) b (deq)

Fig. 11. Azimuthal angle y distribution for pp — (x'n)p in a coordinate system using ¢asdefined by Eq. (3.8)
as z axis, the TCH system and the SCH system. A y distribution should be isotropic if the helicity is conserved

coordinate systems TCH, SCH and using ¢ as axis. The data neither allow SCH or TCH
helicity conservation, but the ¢ direction is compatible with helicity conservation.

Finally we mention that the nonresonant 3n background in the reaction m*p —
— wtn-n®Att at 7 GeV/c [27] follows nicely the rule of helicity conservation in that co-
ordinate system.

7. Summary and conclusions

We investigated the consequences of the AQM relating a pA vertex to a nV vertex.
The restrictions imposed on the A couplings led to constraints for the joint decay moments
in associated vector meson A production. These have been found in excellent agreement
with the data on ntp — wA*, g°A*t and K¥p — K*OA+*, The assumption of a quark type
coupling turns out to ke a very useful tool for amplitude analyses of A reactiors.

Cho and Sakurai proposed a smoothness relation for the ¢ production amplitudes
in 7—p — 0°n from vector dominance. Since the AQM treats the A as a spin 1 particle,
this idea can also be applied to the A. We found the VMDR in good agreement with the
data on np — wA for both w and A, and on np — pA for the p. In cases with one amplitude
dominating the process, VMDR lead to helicity conservation along a direction ¢ between
the SCH and TCH direction. Surprisingly enough we found this helicity conservation to
be true also in diffractive processes. While the theoretical justification seems to be rather
poor, the experimental success in various cases makes us believe this distinction of the ¢
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vector may be a general rule. Apart from theoretical implication, such a rule may be
helpful in future amplitude analyses of np — n(pnn) or pp — p(pam) The LBL analysis
on mp — (3m)°A++ [27] demonstrates the advantage of using ¢ as quantization axis.

We are mostly indebted to the members of Group A at LBL for the permission to
use the DST’s on their 7 GeV/c ntp and 12 GeV/c K*p experiments, and to the members
of the Bonn—Hamburg-Miinchen collaboration, especially Dr W. Schrankel, for providing
us with Fig. 11. We thank A. Bialas, L. Van Hove, W. Ochs and M. Tabak for helpful
suggestions and discussions.

APPENDIX

An observed asymmetry for the A may indicate the need for 4~ S-wave background.
To include this we add to Eq. (2.2) the corresponding j = 4 term

2j+1 on _
F,, = Z — Hi,,r DINg). (A.1)

Ji“i‘

HY? is identical to that Eq. (2.3) and H}/? given by
HY,=5,,5. (A.2)

fp"

Ignoring the double flip amplitudes ¥ we can order the amplitudes into a vector
X, =T+, Ty, T-, 8, U+, Uy, U-). The integrated cross section is simply given by

Wo = ; IXIIZ
and the decay angular distribution as
1 ~y
W= in E X A4;:(q )X,3€ (A-3)
L
with the symmetric matrix A4:
345 +3
344490 3 a0+3
$4+4- $d0d-  342+%
V24, V2 4o V24- 1
oy — 3. . 3. 3 R R
Auta) = %M_ i - Lai-ipo ra-i)
" a - 3.4 4.
~3 404~ 0 3 4od+ 0 —=5-dod+ 3d0+3
NV V3. N a 3. .
-5 =P — - dods 5 d+d- 0 —34.4- \/Tq 30 3(1—3%)
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