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THE TOTAL SUPERENERGY TENSORS IN GENERAL
RELATIVITY AND IN EINSTEIN-CARTAN THEORY AND THE
GLOBAL SUPERENERGETIC QUANTITIES OF A CLOSED
SYSTEM
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Physics Department of the Pedagogical University of Szczecin*
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In this paper we introduce the notion of the total superenergy tensors in the general
relativity and in the Einstein-Cartan theory. We calculate the explicit forms of these tensors
and give some remarks about the global superenergetic quantities of a closed system.

1. The superenergy tensors

In the paper [1] the definition of the superenergy tensor of a physical field & which
possesses an energy-momentum tensor 7,° or pseudotensor and the definition of the
Maxwellian superenergy tensor of the curvature tensor field R, , ;" were given. The first
definition given in {1] has the form!

4]
HS (T, —T,Hdy'dy*dy’ gj (T, —T,)d%y
STY(P): = lim == = li ) 1
«(P) alill i, Q;n})o 275 ¢y

For the tensor field T,” of the class C’, r > 3, it gives
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* Address: Zaklad Fizyki, Wyisza Szkola Pedagogiczna, Wielkopolska 15, 70-451 Szczecin, Poland.

* Eq. (1) differs from the definition given in [1] by the multiplier 2. Consequently ST,;Y(P; v@)
= W% g YT, <5 does not possess the multiplier 3.
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In (1) T,” denotes an energy-momentum tensor or pseudotensor and ST‘;Y——the correspond-

ing superenergy tensor. The definition (1) has been introduced following Pirani’s paper [2].

In this definition, the STL; Y(P; v°) is constructed by means of some kind of averaging
0

of the differences (T,' —T,”) over a three-dimensional cube or sphere lying in the hyper-
surface 1° = 0 of the NCS(P) of the connection {;;}i The point P (= the origin of the

NCS(P)) is the geometric center of this cube (or sphere).

Now, we think that in the four-dimensional space-time we should average the differ-
]

ences (’I‘;?’—Tﬁ;,") over a four-dimensional cube®. Thus, we modify the definition (1) of the
superenergy tensor to the form
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The origin, P, of the NCS(P) is the geometric center of the four-dimensional “cube”
over which the averaging in the formula (2) is performed.
If the field 7,7 is of the class C”, r = 3, then we get from (2)
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In the following we use the definition (2) of the superenergy tensor of a physical field @
which possesses an energy-momentum tensor or pseudotensor. We shall calculate the total
superenergy tensors of the gravitational field and matter in GRT and in ECT. These total
superenergy tensors will be calculated according to the formula (2) from the energy-mo-
mentum complexes considered in GRT and in ECT.

2. The energy-momentum complex in GRT and the energy-momentum complexes in ECT

Let us write the Einstein equations in the form given by Trautman [3]

L e " 8rG _ .
2 Npa- A Q~a = (_) 7 T;L‘ (4)

Q% is here the 2-form of the Riemannian curvature, T, — the 3-form of the energy-
-momentum of matter: 7,: = T,'n, where T, is the metric energy-momentum tensor [4]

andn, := L AP AV Nvapy Mpae i = UNpe 3 = vy\/—g €00y Where v’ denotes the fixed

field of the co-frames. After a direct calculation, we get from (4)
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2 In both theories, GRT and ECT, we use the NCS(P) of this connection.
3 Sphere is not admissible now.
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w?, denotes here the 1-form of the Riemannian connection and 4 is the operator of the

exterior differentiation.
In local coordinates (v” = dx”) and in Schouten’s language [5], we have from (5)

o e A TR (T at) ”
Col ——=¢& " i =N u- By )

where T,! is the metric energy-momentum tensor of matter and
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is Einstein’s energy-momentum pseudotensor of the gravitational field { } (in a new

1By

representation).
K, = v —g (T, +gt,)) is Einstein’s canonical energy-momentum complex of GRT
(see, e. g., [4, 6, 7]). From (6) follow the continuity equations &, ¢K,” = 0 from which,
with the help of the Stokes Theorem [8-10], we get in asvmptotically Lorentzian coordi-
nates, ALC, the integral conservation laws of the global quantities of a closed system*.
gt,. is either a tensor or a more general geometric object. Consequently, the local
distribution of the gravitational energy density and the local distribution of the total
energy density do not have any physical meaning. Moreover, if we want to calculate the
global quantities of a closed system, we have to work in asymptotically Lorentzian co-
ordinates, ALLC. Many attempts were done to avoid these difficulties: or by adding a
proper curl to both sides of (6), or by using single index complexes, or by using tetrads
or a second metric, see e. g., [13]. In our opinion, these attempts had not given anything
better than we can get from (6) and from the single index complex of Bergmann [14] which
is based on (6). Especially, addition of a curl constructed from the gravitational poten-
tials to both sides of (6) changes the global quantities of a closed system [14] and leads
to the wrong transformation properties of the global quantities of a closed system [6],
[15]. For this reason we will use as the energy-momentum complex in GRT Einstein’s
canonical energy-momentum complex (K, .

The ECT equations can be written in the combined form, see, e. g., [16, 17] or in
the form given by Trautman [3]. In the combined form they have the same analytic shape
as (4) with the exception that T, — the 3-form of the energy-momentum of matter is
constructed now from the so-called “combined energy-momentum tensor” .7}, [16,
17, 18] instead of the metric energy-momentum tensor. Consequently, the energy-mo-
mentum complex of the combined formulation of ECT has formally the same form as
gK,.. The differences consist in the following 1°. T’ — 7,7, 2°. gt,’ is now the
Einstein pseudotensor constructed from the Riemannian part of the full metric con-
nection Ig,.

# The definition of a closed system and ALC in GRT was given by Malier [6}, [11] and Trautman [12].
In the framework of ECT we define a closed system and ALC in the same way.
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In Trautman’s formulation [3], the ECT equations have the form

o . 3nG
%nua- A UQ~6 = (_)_c‘i," Tw (7)
s, dnG .
r’uaa A B = C—4 Sua' (8)

UQ* is here the curvature 2-form of the U, geometry and ©° — the torsion 2-form of this
geometry. T, denotes the energy-momentum 3-form of matter constructed from the
canonical energy-momentum tensor ,,7," [3], [16]: T, := ..,T,'n,. S,, is the 3-form
of spin of matter: S, := 7,,” #, and 7,,” is the canonical spin-tensor of matter [3], [16].
The rest of the notation is the same as in (4). Trautman’s formulation of ECT explicitly
uses the geometric characteristics of the U, geometry.

(7) and (8) can be written in the following, equivalent form
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%, is here the connection 1-form of the U, geometry and v” denotes the fixed field of the
co-frames.

In local coordinates and in Schouten’s language we have from (7’) and (8)
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In the formula (9)
4
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is the energy-momentum pseudotensor of the field I's, and .,,T,” is the canonical energy-
-momentum tensor of matter. In the formula (10)

4
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and 7,,” is the canonical spin-tensor of matter,
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We may call the tensor %,,’ “the spin-tensor of the field I';,”. In vacuum ¢,” — g2,”
and
4
@ svaﬁvgaxn’;ii;l;rt};v N FUELW]'
gf,. denotes here Einstein’s canonical pseudotensor and rUL™ denotes Freud’s super-
potentials.

From (9) and (10) follow the continuity equations
oV =g (Tl +1)] =0,
0[V-2 @ ~7a)] =0,

from which we can get, in ALC, the integral conservation laws of the global quantities of
a closed system.

Outside of matter (8) and therefore also (10) become trivial. As the result, we do not
have non-trivial integral conservation laws for a closed system from the continuity equa-
tions following from (10)°. On the other hand, we do have non-trivial integral conservation
laws for a closed system from the continuity equations following from (9). The global
quantities of a closed system calculated from (9) in ALC are the same as the global quanti-
ties of the same closed system calculated from the energy-momentum complex of the
combined formulation of ECT. Thus, we can put

K, = =g (anTa +1,0)

as an energy-momentum complex of ECT in Trautman’s formulation. This complex
differs from the energy-momentum complex of ECT in the combined formulation of
ECT by the curl®

4
i = o (g oK.
K, denotes here the (—) contortion tensor [16]. The curl C,” vanishes in vacuum. The
complex K,°, similarly as the energy-momentum complex of ECT in the combined
formulation, is either a tensor or a geometric object of the other kind. Consequently,
we must use it with care (we must use it in ALC).

It is interesting how spin in ECT influences the metric and the global quantities of
a closed system. It appears [19], in the linear approximation’ of ECT, that spin gives
a contribution to the metric identic in form with the contribution arising from the angular
momentum of a closed system. Hence, the presence of spin has influence on the components

5 We get all the global quantities of a closed system equal to zero.

¢ We may put as well as the energy-momentum complex of ECT in Trautman’s formulation the
energy-momentum complex of ECT in combined formulation because any energy-momentum complex
is determined up to the curl. This problem will be discussed elsewhere.

7 This approximation is sufficient to calculate the global quantities of a closed system.
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of the global angular momentum of a closed system calculated either in the framework
of the combined formulation of ECT or in the framework of Trautman’s formulation
of ECT. Obviously, if we want to consider the angular momentum of a closed system in
ECT, we have to pass in the same way as in GRT [13], [20], to the language of single index
complexes and have to use the suitable, asymptotically Killing descriptors of the compo-
nents of the angular momentum. The components of the global angular momentum of
a closed system must be calculated in ALC.

3. The total superenergy tensors in GRT and in ECT

Using the analytic forms of the energy-momentum complexes of GRT and ECT
given in Section 2 we can calculate, according to the formula (2), the analytic forms of
the corresponding, total superenergy tensors. We get the following results:

The total superenergy tensor of GRT,

'SP %) = S UP; )+ S, (P )
00 0 4] 4]
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In the above expression k& =

G = 3% ; o5, (P; v?) denotes the superenergy tensor
s

of the gravitational field {a} calculated from gz,” and ,S,'(P; v?) denotes the super-

By

energy tensor of matter® calculated from the metric energy-momentum tensor T, K,,*
denotes the curvature tensor of the Riemannian connection, T, := T,,—3g,T," and
the meaning of other symbols is the same as in [1].

The total superenergy tensor
tion of ECT

comSp (P;1°) of ECT in the combined formula-

The total superenergy tensor .S, (P;v?) of ECT in the combined formulation of
ECT has formally the same analytic form as the total superenergy tensor of GRT, i. e.,
it is given by formula (11). The onty difference is that if we use the formula (11) as repre-
senting the total superenergy tensor of ECT, then 7',! will denote the combined energy-
momentum tensor [16—18] instead of metric one. The total superenergy tensor comSp. (P 09)
of ECT in the combined formulation of ECT can be rewritten in terms of R,,,;*(I') and V

8 The formula representing ¢sT,',‘_’a;,} given in [1] contains a mistake. The correct formula in
* ok

. . . . . }. « e . .2’. ..
Schouten’s notation is ¢ST,,f'a,g = V(an)Tﬂ‘,'+%K.(a|u|g)Tz‘.’— %KY(G,_,;)T,, A



297

which characterize the U, geometry. The corresponding expression is given in the Ap-
pendix. The expression (11) is much simpler than the expression given in the Appendix
and should be used in the concrete calculations.

The total superenergy tensor 1S,'(P;¢%) of ECT in Trautman’s formula-
tion of ECT

The total superenergy tensor of ECT in Trautman’s formulation of this theory differs
from the total superenergy tensor of ECT in the combined formulation by the contribution
arising from the additional tensor

1 c P 1 ’%("“ﬁ)’ oK K}“)
= ——=C, = = 0,(e7 s Koyr)-

\/_g u 167G \/_g 8 Muixploy

"y
addT‘r
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This contribution has the following form in terms of Riemannian part {a} of the connec-

tion I';, and combined energy-momentum tensor T’
By com* u
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e KT . e CTSREA C e ARG
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In (12)
K to= -+t 400~ gt
is the conspin tensor. 1, .* denotes here the canonical spin-tensor of matter [13]. The ex-

pression of the tensor ,4,S,"(P; ¢°) in terms of V and R,.,;"(I') is given in the Appendix.
The sum (11)+(12) gives the total superenergy tensor {S,'(P; t?) of ECT in Trautman’s

. . o . .
formulation of that theory expressed in terms of and .7 . . The expression of the
By omE
total superenergy tensor S, (P; t°) in terms of *{ and coml 4. 1s much simpler- than
s iy g

the expression of this tensor in terms of I'j, and ., 7,".

4. The global superenergetic quantities of a closed system in GRT and in ECT

For a closed system and in ALC the “‘energetic” integrals expressing the global
energy, E., and the components P; of the global, linear momentum are convergent and the
Einstein-Klein Theorem is true [12].
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Let us consider, in analogy to the “energetic” integrals, the following “superenergetic”
integrals

S/ = Ef‘s;Y J—gdo,, (13)

where 'S,” denotes a total superenergy tensor of matter and gravitation and » means
a space-like hypersurface which is asymptotically flat.

The vector field v* appearing in 'S;'(P; ¢°) is fixed in the following way: we put the
time-like basic vector of every NCS(P) proportional to the time-like vector of the natural
frame in the point P of the global coordinates that are used. This means physically that we
use as the vector field ¢* the field of the four-velocities of the observers which are at rest
with respect to the global coordinates. This is a natural choice of the field +* in fixed,
global coordinates if we want to have a uniquely determined field 'S, to calculate the global
superenergetic quantities of a closed system.

In ALC, (ct, x, y, z), when Z is x° = const, the integrals (13) take the form

Sy = xojco,.st 'S,% /=g dxdydz. (14)
Proposition: For a closed system, the integrals (14) are convergent.
Let us write the integrals (14) in the form
S, = [ &S0V -gdxdydz+ | S,°/—gdxdydz. (15)
x%=const [ x%=const (113}
The integrand in (I) does not vanish only in the domain occupied by matter, hence it is

finite. In the integral (II), the contribution depending on the presence of matter also gives
finite result. On the other hand, we have for a closed system and in ALC

| contribution to (II)
| arising only from curvature | ~ O(=%) < ip,°| ~ O(r—*), (16)
| tensor K,," ﬁ

where r 1= \'x24+y?+z? and the integrals |  igt,°] v Té dxdydz are convergent. Thus

x0=const

for a closed system and in ALC, the integrals (14) do converge.

We call S, the global superenergy of a closed system and S, — the components of
its global, linear supermomentum.

For a stationary closed system, e.g., for Kerr’s or Schwarzschild’s space-time, the global
superenergetic quantities, like energetic, are independent of time. Thus, in this case, we
have a sort of conservation laws of the global quantities. Of course, these conservation
laws do not follow from Noether and Stokes Theorems. For the more general closed
systems the integrals (14) are, in general, dependent on time®.

The integrals S,(Z), for a fixed X, form a free-vector with respect to GL(4; R),

moreover, the integral So(V) = {'S,° V/:-g dxdydz is invariant with respect to the co-
| 4

ordinate transformations x° = x° x* = x¥(x*), performed within the hypersurface

° This problem will be discussed elsewhere.



299

x° = const. From the last remark it foliows that the “amount of the superenergy inside
the volume ¥V’ has a physical meaning.
In the framework of ECT, the superenergetic integral quantities of a closed system

calculated from ,;S," and from 1S, are, in general, different. This fact produces some
difficulties®.

5. Concluding remarks

The superenergy is a quantity which possesses in GRT and in ECT, locally and
globally, some satisfactory properties. Moreover, it follows from Pirani’s work [2] and
from our definition of the superenergy tensors that the local superenergy flux of the gravita-
tional wave may be properly defined.This local superenergy flux is determined by the
components gS(',f‘ of the superenergy tensor of the gravitational field. Consequently, we
may call gS(',(.’ the density of the superenergy of the gravitational field. On the other hand,
it is known that the local energy flux and the energy density of the gravitational wave
cannot be satisfactorily defined because g#,” is not a tensor. We cannot also satisfactorily
define the global energy flux of the gravitational wave, compare e.g. the problem of the
energy flux of the Einstein—Rosen gravitational wave. Thus, in the gravitational radiation
theory, the superenergy behaves better from the physical point of view, than the energy.

We can also consider the superenergy tensors in the framework of SRT. In SRT and
in Lorentzian coordinates L, we get from the formula (2)1°

S0 %) = 20— g)T ) p(x0) 2 63T, + AT,
L

T an
L L
Consequently, the global superenergetic quantities of a closed system are equal to zero.
We will finish this paper with some remarks about the problems connected with the
total superenergy tensors of GRT and ECT which still have to be solved. The first problem
is the problem of unigueness of the superenergetic global quantities of a closed system.
This problem arises because: 1. there is some arbitrariness in the choice of the field +*
which has to be present in 'S,” (P;t?), 2. the energy-momentum complex of GRT and
the energy-momentum complex ECT are not uniquely determined. Consequently, the total
superenergy tensor of GRT and the total superenergy tensor of ECT are not uniquely
determined. Probably, different possible fields of the total superenergy tensors will give
different values of the global superenergetic quantities for a given closed system. In this
paper we have considered only the energy-momentum complexes which naturally follow.
from GRT and from ECT equations and the total superenergy tensors corresponding
to them with the natural fixing of the vector field ¢*. The second problem is: what is the
physical meaning of the superenergy in nature ? These problems will be examined elsewhere.

The author wishes to thank Professor A. Trautman and Dr A. Staruszkiewicz for
their interest in this work and, especially, Dr S. Bazanski for many useful, critical remarks.

10 In the framework of SRT we can perform the averaging and limiting processes in different points
of space-time in the same, fixed Lorentzian coordinates L.
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APPENDIX

We give here the expressions of the tensors .S, (P; v%) and ,448," (P; %) in terms
of V and R,,;* which characterize U, geometry of the Einstein-Cartan space-time.

comS (P %) = (0™ 'gaﬁ){ (R (aR|u(}.a)|ﬁ) 5ZR/}‘-’?;R;1(¢;§)§)
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In the above expressions
C e o opre_ 1 ose.ck__ 1 oS0 K
S, = 1,0~ 7 00T =3 60T,

1s the modified spin-tensor of matter and

K" = (K0 Kfv):= Kylv,

and so on. .7, means the combined energy-momentum tensor of ECT and
Vo, .y 1 av “x
LT/,z - comTu‘ -7z O,u comTaA'

Transforming the formulae (11) and (12) to the form of (Al) and A2) we used the

*
identities which connect V with V and K ;" with R, ;". These identities are given, €. g.,
in [5]. The sum (A1)+(AZ2) gives the total superenergy tensor 1S,(P; v°) of ECT in Traut-
man’s formulation of that theory expressed in terms of U, geometry.
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