Vol. B9 (1978) ACTA PHYSICA POLONICA No 4

BEHAVIOUR OF A ROTATING ELECTRICALLY CONDUCTING
SPHERE IN A TIME-INDEPENDENT HOMOGENEOUS
EXTERNAL MAGNETIC FIELD (COSMIC APPROXIMATION)
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In a previous paper the general theory of the electromagnetic field generated by rotation
of an electrically conducting sphere in a time-independent homogeneous external magnetic
field was developed. In a second paper the results were applied to a sphere in a laboratory
experiment (laboratory approximation). Here the results are specialized for a spherical
rotating celestial body which generates a characteristic magnetic dipole and an electric
quadrupole (cosmic approximation). The first quantity is used to treat the gyroscopic
equation of motion of the body in an external magnetic field, admitting isotropic friction.
The physical behaviour of the body shows two interesting features: 1. a precession with
a characteristic frequency, 2. parallelization of the rotational axis towards the external
field direction due to friction.

1. Some remarks on the general theory and on applications

The problem of an electrically conducting sphere (ro, radius, ¢ electric conductivity)
with zero electric charge, which rotates with the constant angular velocity o = jo,+ ko,
in an external homogeneous time independent magnetic field B, = kB, was investigated

previously [1, 2]). Under the assumptions (v = @ x r velocity)
2

v
a) " <1 (non-relativistic case),

b) d <1 (rather high conductivity o),
g

we solved the problem exactly (cgs-system of units and vacuum). This means that our
solution is exact up to the order v/c, i. e. apart from the magnetic properties also the
electric properties were taken into account.

Historically the problem was initiated by Hertz [3] (old-fashioned notions and therefore
a rather intransparent treatment) and continued by Besdin et al. [4] (here is no space for
critical remarks and Rédler [5]). If one considers only the magnetic effects of the rotating
body, one can use the rough transformation method of Landau and Lifschitz [6]. We
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treated the above problem for two reasons: first, from principal points of view we were
interested in its general analytic solution; second, we thought of several cosmic applications
which will be investigated in a further paper (behaviour of the solid core of the Earth in
the external magnetic field generated by the fluid core, behaviour of a celestial body
in the neighbourhood of a neutron star with its extremely strong magnetic field of about
1012 Gauss, measured (1976) by Triimper et al.).

Our general results are comprised in the Appendix. In the following we refer to the
formulae reproduced there from paper [1]. Since the physical behaviour of the rotating
body considered is qualitatively different for the two following cases:

2) owro

<1 (laboratory approximation [2]),

awro

b)

> 1 (cosmic approximation),

we have to treat both cases separately. This paper is devoted to the cosmic approximation.

2. Notation

We use «the abbreviations (r radial coordinate)

2no 2
00=7, y=—c\/7ww, & =nyr. 2.1

For the calculations the functions
Q&) = A, bery (8)+ 4, beiy (8),
() = A, beiy (§)— A, bery (§) (2.2)

are very important, where ber;,, and beis;, denote the Kelvin functions defined by

2 cosz sinz .
with
+ 3im
z=2¢ 4

(I3, Bessel function). Using trigonometric and hyperbolic functions we get the following
representations of the Kelvin functions [1]:

ber (&) = — \/ —2: gt [cos 3 COS —= (cosh =+ 1smh —)
n V2 J2 V2
+sin 2 i — 7 (smh 7 zcosh \/2>] (2.4)
beiy (€) = — \/ 72?5 *[cos 38—" sin ji (smh\/i + = ! cosh \/2>
—sin %’t cos 5—2 (cosh jz ! sinh ¢2)] (2.5)
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3. Application to a spherical celestial body

Let us now apply the formulae of the Appendix to a spherical celestial body, i. e.
to a sphere of the size of the Earth or even larger. This means that we have to approximate
the Kelvin functions in a suitable manner to obtain approximations of both important
functions 2 and I

In contrast to a sphere in laboratory experiments, where we found a good approxi-
mation by series expansion with respect to £ (laboratory approximation [2]), the situation
here is much more difficult. Dealing with a celestial body we have to consider two regions
in which different approximations apply:

cwr? . . ..
a) —— <1 (laboratory approximation valid in the region about the origin)
c

owr?

cZ

b)

» 1 (cosmic approximation). 3.D)

To illustrate this it is convenient to perform some estimates using figures similar to those
of the Earth:

w=73-10%s1 o¢=23-10"5s"1,
The transition region between the two approximations is determined by

owr? ) c
= e, r = —— = 1lkm.

C2 ’ o ALY

Though the region about the origin is extremely small as compared with the celestial body,
we must nevertheless distinguish between both regions, because the functions exhibit
different behaviour. The cosmic approximation functions in particular do not fulfil the
regularity at r = 0. For the region about the origin we can adopt the expansion results
from the laboratory approximation, but without fixed integration constants, since the
boundary value problem for the celestial body must be solved once again from the begin-
ning.

Let us now treat the cosmic approximation. We approximate the Kelvin functions
under the condition

f= 1, (3.2)

J

N

Exploiting the limit behaviour
cosha — 1¢® sinha— e 3.3)

from (2.4) and (2.5) we are led to

~3 a

&% 3n ] gt 3n
ber; (&) = — N cos (a- —8—> , bei; () = — :/2:1{ sin (a— ?) 349
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This implies instead of (2.2)

ETter [ 3n ) 3n
Q= ——\7;2: Ay cosla— »—g) +A2sm(a— —é—) s
T
gt 3n 3z
= — ——1A;sinfa— — ] —4, cos(a—- — 1.
J2n 8 8

Furthermore, from (A.1) and (A.2) we obtain (£, = yry)

3 1/27[ L éo 5n
A - YN wB YZ cos{ —= — —1},
' oyt Pococ (\/2 )

32 So. & Sn
A, = — w,B e V7 sin - —1},
. (\/ 2 )

18m230¢2 Vit

oy’

Al 443 =
With the help of these results (3.5) and (3.6) read

3w, B —% r—r
Q = 27l J‘( ? cos [—% (r—ro)+ %] ,

wy N

_ 30,B RIS,
@, orol ‘/_( ) sin l:\/_(r r0)+ ]

wy

(3.5)

(3.6)

3.7

(3.8)

(3.9)

(3.10)

(3.11)

Further treatment consists in rather tedious calculations to get the physically interesting
quantities, presented in the Appendix without approximation. In the following we shall

list our results.

4. Physical quantities inside the sphere

Magnetic field:

~ w?B, { 3ro L-ro) Y
Bg = —5-<1— —e'2 —=(r— in @
9 e 1 e cos ( NG (r r0)>} sin

2F
w Byr L_ r—rg) sin
—-%—-”—9—00/2( ° ( _(r——ro))cos@cosq)
or V2
w,w,B, 3r i_(r—ro) Y } .
|- —ev2 os| —= (r—r cos @ sin ¢,
w? { 2r \/2( o) ¢

(4.1
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- w.0 BO 31‘0 Lor=ro Y
B = 2= 1— —e'2 cos| —=(r—r cos
v 3 { 2re \/2_(7' 0) @
3 a)yBOrO J—_("_’O)

+3 X" ev2 sin —y—_(r—ro) sin @;
wr V2

electric field:

2
~ rw, B, rwyw, B, o —=(r—ro) b _
E, = — I—cos 20)~— I-3—e ~/ cos| —=(r—r 1+3cos20
3(0,,(0 Boro —_-(' "0) ’Y .
- E 2 D ez —= (r—rg) ) sin 20 cos
dew \/2 ( 0) '
B r—ry
o °|:co +3 (0 —w,) To J_( 7 s(—y: (r—ro)>:l sin 2@ sin ¢,
cw? V2
~ ro,B ro,w?B
Eg = — 2 (0? =2 w?) sin 20 + —2 2" cos 2@ sin ¢,
2cw? cw
2
- ro,w;B
E, = —222co0s O cos ¢; 4.2)
cw
electric current density:
Jr=0,

. 3¢caow,Borg L (-=ro)
jo = ———"—— e2
4myr

w; Y ( )+ n . Y ( )+ L S
X | —cosd{——=(r—r —rcos g—sin{— (r—r —tsing|,
w 2 YT Y 2o T g tne
. 3coowyBorg = r-ro) [ .
= — — — Y V23 —cos<—=(r—r + sin @
](p 47!')’7' \/ ( 0)
+sin {— ( )+ n} e + 2 cos {2t ( )+ n Osi
—=(r—r -— ¢ cos @ cos —Cos{—= (r—r — > cos Osin g |;
N A LRt WAL ¢
charge density:

w. B, 3w w,roB, o 2 (r- ro)

Y
- _ 08 4 — (r— 143 cos 20
e 2ne 167cew’®r {\/i 4 rO)} ( 1)
3 B, L¢-n
B M__o_ e‘/i( 0) sin _’}’: (""ro)} sin 20 cos 1/
8ncwr V2

3w, (@) —wDreBy L -r
W@ a);)r 070 737 cos 4 (r——ro)} sin 20 sin @. (4.4)
8mcwr \/2
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3. Surface charge density and Joule’s heat production
Both these quantities being integral quantities depend on the parameter r,. Since

the relation ry > = is always valid for the interesting applications, we get rid of the
v ow
above mentioned separation of the regions. Therefore in a good approximation from (A.9)

for the surface charge density

roB
2 oBo

= oo [mz(wzz +20})— 0,20} + 50}) cos 20 — o, (302 + Tw?) sin 20 sin (p] (5.1)

results. Furthermore, approximating (A.13) and using (3.9) we find for Joule’s heat produc-
tion of the body (A.11) the expression

dQ 3w}2,B(2,réc . )
— = ——~——— (higher order of magnitude). (5.2)
dt 420 /row

6. Physical quantities outside the sphere

For the magnetic moment (A.16) we obtain

3 2.3
w,w, B, w,reB,
m,=0, m=—" , My s — 6.1
v 20* 2w? @D
The electric quadrupole moment tensor (A.18) takes the form
5 2
w,ryB @
Py =Py = H’(I—% —3), Py = —2Py, (6.2)
6c \ w
2.5
w,w,reB
Pi,=0 P33 =0, P23=”‘_y 29
2ew

Sections 4, 5 and 6 summarize the main results for further application. From the
physical point of view, in contrast to the laboratory approximation, where the effects
increase proportionally to the conductivity o, in the celestial body approximation a physi-
cally surprising phenomenon occurs, that is the conductivity does not primarily affect the
interesting quantities, e. g. the magnetic moment (6.1). This means that these quantities
are rather insensitive with respect to a change of the conductivity. But one should keep
in mind that there does exist a lower limit for the conductivity, determined by the approxi-
mation inequality
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7. Angular velocity decrease by Joule heating

Let us now consider a body rotating with a constant angular velocity about a fixed
axis and generating the above calculated electromagnetic field. The kinetic energy of the
body is

Tyin = % 00® (9 moment of inertia). (7.1)

Provided that no further forces act, the decrease of kinetic energy is equal to Joule
heating of the body. Hence for the relative decrease of the angular velocity the formula

1 do 1 do 1 dQ
= - == 7.2
w dt 2T dl fw* dt 7.2
results. Inserting the expression (5.2) we find
1 do 3B2ricw?
— it (7.3)

w dt 4 J200° Jreo

8. The spherical celestial body as a gyroscope

Taking only into account the magnetic effects, 1. e. neglecting the electric interaction,
the gyroscopic equation of motion of a rigid body in an external magnetic field B, reads:

d .
97;?: mxBy+M 8.1

where a moment M of the friction force is admitted. Here the expressions for the magnetic
moment (A.16) written in vectorial form to avoid the distinction of the previously preferred
direction, must be inserted (it is assumed that the physical parameters permit the stationary
treatment of the problem). The vectorial form of (6.1) reads

3

m= % oX(oxB). (8.2)
2w

Let us now consider the following model: We describe the motion of the spherical gyroscope
with respect to an inertial frame. The gyroscope, surrounded by a fluid, may be embedded
concentrically in-an external spherical shell, uniformly rotating with the angular velocity
Q,. Assuming isotropic friction, for the moment of friction force we apply the ansatz:

M = k(Q,— o). 8.3)

According to calculations of Steenbeck and Helmis [7], the material coefficient x takes
the form

_ 8nren

3d

(8.4)
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if the thickness d of the fluid layer is rather small compared with the linear dimension of
the configuration (n viscosity). One realizes that this moment disappears if both angular
velocities coincide. For simplicity we choose @, parallel to the external magnetic field:

0, = kQ,. (8.5)

Inserting (8.2) and (8.3) into (8.1) we obtain the equation of motion of the gyroscope in
component form:

d 3B o

i S AP L B i

dt ] 20 o
do, K raB: w0, do, «
doy % ,_TBowo, do. ko 8.6
dt A NP A ®.6)

The last differential equation can be integrated immediately. The result reads
t

Cl)z = E}ze—ﬁ'*'go, (8‘7)

where @, is an integration constant and
]
T, = — (8.8)
K

is a characteristic time constant being a measure for the time needed for the paralleliza-
tion of the angular velocities. Inserting now the solution (8.7) into (8.6a) and (8.6b) we
obtain a linear system of two differential equations, which can be solved in the following
way: We multiply the first equation by 2w, and the second one by 2w, and add them.
Introducing

wp = o} +ow} (8.9)

we find the solution

4
wg = Wge Tx (8.10)

being an analogue to (8.7).

If we multiply the second equation with i and add the result to the first one a differen-
tial equation occurs which can be integrated. The result is

) - t iriB: Q4+ w,e ™
®,+iw, = w exp [— -T: -5 e T ST L dt (8.11)
4] z

(w integration constant). As regards the physical interpretation, we realize that a super-
position of friction and precession takes place. For small friction a good approximation
of (8.11) is given by

t
. +in, = we Tre', (8.12)
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where the precession frequency reads

(0§ = wi,+©2). (8.13)

If o, > 0, the precession angular frequency is negative, i. e. the precession is clock-wise.
Finally, we notice that from (8.3) for the friction heat production
16
—d%f = k(2 —0)* (8.14)

results.
On further application of the above calculations will be reported in a following
paper.

APPENDIX

This Appendix contains the results of the general theory [1]. The formulae are written
in a different form which is more convenient for practical calculations, namely the Kelvin
functions are eliminated in favour of the trigonometric and hyperbolic functions. Under
these circumstances the coefficients 4, and A4, in (2.2) take the new shape (£, = yro):

3w,B, ﬁ ro
4, =
@ \/y
3
co n: (cos -— mh =22 4 sin =2 cosh ——)

NG \/2 \/2 Ny

3n o o &o )
+sin — | sin —= cosh —= —cos — sinh
( V22 V2§42

cos (&g /2)—cosh (&g +/2)
4, = Bor/ro A2

N
COS — 3n (sm & cosh c0s —= sinh )
VR J2 V2

—sin 387z (cos \—i—— sinh —\75 +sin \—é/— cosh j;)
cos (&g +/2) —cosh (&4 /2)

On the surface of the sphere the quantities (2.2) read

(A1)

®

. 3o,B, £o sin (o /2)+sinh (%o \/i)}
== o m{” 2 505 (%0 D) —cosh (Gg D))’ “9
Iy = 3w,B, \Jro sin (&, /2)~sinh (¢ +/2) A

V2yw  cos (& 4/2)—cosh (&6 4/2)



Results for the interior of the sphere
Magnetic field (B = B,+ B):

~ (l)y -3 wy -3 . wz -3y wy . .
B, = —=|r *I'- —By]cos @+r *Qsin @ cos p— — | r *I'— — B, | sin O sin g,
w w w (43

- w @y,
Be= -2 (% rAr L grTir - 2 Bo) sin @ +(% r ¥Q+1 r"*Q") cos @ cos ¢
w o

z

O Cariq b Dy .
~—\gr *F+5r %" — — B, }cos O sin ¢,
() 0]

= @, - - ’ w - - " ol
B, = - __(_3: ] Y ._”BO) cos p—(% r ¥Q+ Lr #Q')sin p; (A.5)
) w
electric field (E = E):
- raw, ro,w, T 3
E, = — =2 By(l~c0s 20)— —5 | Bow,— — (3 r i +r #I") | (1+3 cos 20)
2¢ dew 2

)
+ —4—; (L r7 Q4+ yrtQ’) sin 20 cos ¢

r ®
+ -— {:2«;wa30+ ) (0} —wd)Grir+ r"*yl")] sin 26 sin g,

2c?
= ro, 2_3 2 3 -3 : @ -3
Eg = — 5 [(0*—3 0;)Bo+5 w,0r ] sin 204+ — r™*Q cos 20 cos ¢
2cw 2c
r
ot [2w,0;Bo+ (@] —w})wr *] cos 20 sin ¢,
. r o, _ ,
Ey=5— [20,w2By+(w? — w})wr™*] cos @ cos p— > Qcos Osin p;  (A.6)
cw c

electric current density:

Jr=0,
. €Oy -3 .
Jo = — r Hw 2 cos p—owl sin @),
4r :
co
Jo = — ﬁ r }(w,Q sin @ +wI cos O cos p+w,L2 cos O sin ¢); (A.7)

true electric charge density:

w,B
20 0 s -dp e (143 cos 20)

e=- 2ne 16ncw
w, - - ;
O [3710 2yrH0/ sin 20 cos g
16nc
02 —?
b 2 £ ,.—%[*._r"«“yl“'] sin 20 sin g; (A.8)

8ncw



electric surface charge density:

7‘0 -
b= ey [0} +20})By—o,0.0r5 (o)

—{@,Q2w} +502) By + 3w,0,015 1T (yr)} cos 20

—2m,w*ry ¥Q(yr,) sin 20 cos ¢

—{w,(3w? +Tw?)By + 2Aw? —w?)wrg T (yry)} sin 20 sin ¢];

Joule’s heat production density:

dq 1 2
2 a<E+ -va) ;
dt ¢

Joule’s integral heat production of the sphere:

do 2 3ni
;Q; = now? ——— (41 +4)) J r|Jy(yre )]2dr
where
9nsz re
Aj+ A = - 0’0 _
P w?y[cos (&, 1/2)—cosh (& /2)]
and

3ri
J rid y(yre * )2dr = _1_. [\/2 {sinh (& \/2) +sin (&, \/2)}
r=0
+c0s (&4 /2) —cosh (& \/i)] .
Hence we find
dQ _ 30}Biroc’ [1 o sin (§o /2)+sinh (& \/5.)]
J2 cos (&, \/2)—cosh (&5 1/2)

dr 8now?

Results for the exterior of the sphere
Magnetic dipole field:
B= 3 (me)e, — z
P 3
with the magnetic moment
Dy0,

W,
m, = % rgQ(?"e), my, = — ‘é’aj rOI'(er)+ 207 roBo,

wz
m, = 2_0) ror(')’ro) w "oBo,
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(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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electric quadrupole field:
o 1
E, = — [% P33(1+3 cos 20)+3(P,; cos g+ P, sin ¢) sin 260
¥

+3 {2 (P11 —P;;) cos 2¢+ P, , sin 2¢} (1 —cos 20)],

.1
Eq = — [3 P35 5in 20 —2(Py 5 cos g+ Py sin ¢) cos 20

— {3 (Py;—P,;) cos 29+ Py, sin 2¢} sin 207, (A.17)

. 1
E, = = [2(P 3 sin ¢ — P,; cos @) cos @ + {(Py; —P,,) sin 2¢— 2P, cos 2¢)} sin @]

with the quadrupole moment tensor
5

row, -
Pii=Pop = 420)2 [waw,to a:’T(Wo)"‘% By(w*—% COJZ;)]’ Py; = 2Py,

P =0, Piy=— =100,

5

Py = —

o [(@ ~ 0)rg *ol (yro) + 20,02 B,]- (A.18)

From (A.16) we realize the interesting orthogonality relation

mo = 0. (A.19)

I am very grateful to Silvia Zollmann for checking the calculations.
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