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Symanzik’s method of renormalization in ultraviolet nonrenormalizable quantum
field theories is applied to the construction of Green’s functions of the massless ¢34+, theory.
The renormalization of a regularized version of the theory is presented.

Introduction

The aim of these papers! is to investigate Green’s functions (GF) of the nonrenormal-
izable quantum field theory of massless scalar field selfinteracting by a sixth-power coupling
in 3+¢, & > 0, dimensional space-time. We strictly follow the approach recently proposed
by Symanzik [1, 2] for nonrenormalizable theories. This very promising approach was
originally worked out by Symanzik for the familiar quartic interaction but for the non-
realistic case of space-time with dimension greater than four. We are interested in the sixth-
-power coupling because it is nonrenormalizable also in the physical case of four dimensions,
opening thereby the possibility of experimental verification of the nonrenormalizable
models of QFT.

Following Symanzik, we begin with the Lagrangian

m2 A
P = —Lop- 22 go o2 TR0

= E n (1.0.1)
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The exhibited counterterms of square and quartic type are characteristic of three-dimen-
sional space-time where the sixth-power coupling is renormalizable. The myg is the bare
mass of the zero-physical-mass theory and the Agq is the bare parameter responsible for
the absence of the physical quartic interaction (induced quartic interaction in less than
four dimensions would lead to extreme difficulties in the infrared region). The counterterms
are understood as repeated insertions in Feynman graphs contributing to the GF.

Symanzik’s approach to the removal of singularities in GF of the nonrenormalizable
theory is based on investigating the cutoff dependence of GF corresponding to a regularized
version of (1.0.1). The simplest cutoff which can be used for this purpose is that of Pauli-
-Villars [6] which on the Lagrangian level means the modification of (1.0.1) to

mi A
Zu= —ho00+472 g~ 22 g6 20 g2 B0 g4 (102)
6' 2 4!
which approaches (I.0.1) when A — co. It can be proved that for renormalized 2n-point
vertex functions (one particle irreducible amputated parts of GF) I'2'(g, u, €) correspond-
ing to the Lagrangian (1.0.2) the following large-4 expansion holds:

rig, n,e) = h3'(g, p, &)+ Z 2 AT R (g, 1, €), (1.0.3)

Jj=1 k=

where 4 is a scale of mass and g is a dimensionless coupling constant. h2"(g, u, €) corre-
sponds to the unregularized Lagrangian (I. 0.1) without the counterterms. To hjz,:'(g, U, €)
only graphs with number of loops L > k contribute. The derivation of the expansion
(1.0.3) is identical to the derivation of the analogous expansion for the regularized .,
theory which is presented in Appendix A of Symanzik’s paper [1]. Therefore, we shall not
quote here this derivation and we shall concentrate on studying the A — oo limit of the
vertex functions.

In Sections 1, 2, 3 of the present article we shall construct the renormalized VF of
the regularized theory. In Section 4 here, we shall analyse differentiation with respect
to A.

We shall proceed to the heart of the matter in Section 1 of Part II. Namely, in this
section we shall study the A — oo limit of the I', functions and we shall formulate a set
of conditions under which one can expect this limit to exist.

These conditions will be given in the form of existence conditions for nonsingular
functions of & given as one dimensional improper integrals over functions which are comput-
able in the perturbation theory. However, these integrals, which we shall call Symanzik’s
constants for the @3, theory, are divergent when evaluated by the (finite order) perturba-
tion theory. Actually, the number of such constants is infinite. Helas, the methods for
computing Symanzik’s constants are not invented yet.

The physical discussion is presented in the summary of the original Symanzik paper
[1] about the @},, model and our results for the @5+, model are not enlightening in this
respect (especially as the problem of unitarity is concerned). To compare with the presen-
tations there we have chosen to be more explicit in some parts of the reasonings (to our
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knowledge Symanzik’s approach to nonrenormalizable theories is not very well known).
We shall also currently mention technical differences between the ¢, and ¢%,, models.

The ¢5 ., model can be studied at the physically interesting ¢ — 1 limit. One can hope
that in the future, when one will know how to compute Symanzik’s constants, this example
of nonrenormalizable interaction will turn out to be a little less *““academic™ than the
@4+, at the limits ¢ > 1 or e — 2.

1. Standard subtractions

In the first two Sections we shall analyze in how many dimensions the subtraction
scheme, which was used by Symanzik in regularized ¢} ,, theory (and which we are calling
the standard subtractions), is expected to work for the @5, theory.

Let us first indicate that (UV, overall) superficial degree of divergence of the graph-
ical contributions to VF corresponding to (1.0.1)

d(rfln=oo(g7 K, 8)) = 3—n+¢eL (111)

can in fact grow arbitrarily large for ¢ > 0 (L is the number of loops in the graph). This
statement of nonrenormalizability for ¢ > 0 follows from power counting (the propagators
are i(p*+i0)~1) from the “topological” relation

6V —-2n=2I (I1.1.2)
and from
L=I-V+1 (I1.1.3)

(V denotes the number of six-legged vertices and I the number of internal lines in the
graph). Let us note that

de(n) = dI'JL (g, & = 0)) = 3—n (I.1.4)

can be an even or an odd number whereas for the ¢%,, theory the analogous number is
always even. Let us also anticipate here that if we would subtract from the integrand of
an integral contributing to these VF the first d (#)+ 1 terms of its Taylor expansion with
respect to the external momenta (Zimmermann’s subtractions [9] performed according
to (1.1.4)) then this could produce finite (unregularized) VF merely for ¢ < 1/L (cf. general
formula (1.1.6) below). This situation improves in the regularized theory based on the
Lagrangian (1.0.2).

In fact, the Feynman rules now read: substitute for the vertex —igu~ 2%, for the
propagators substitute

i[(p? +i0)(1 — A-2(p* +i0)].
With these rules we get
dfn, e, L) = A(I'¥(g, p, £)) = 6—2n+(e—3)L (1.1.5)

which could become arbitrarily large only for ¢ > 3.
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The standard subtractions are Zimmermann’s subtractions in the regularized theory
(I.0.2), performed not according to true degrees d, but to the conventional degree d,
(I.1.4), corresponding to the A = oo and & = 0 case. As far as the quadratically diver-

gent part of I'j(g, p, €) is concerned, it is stipulated that not the term p? ~Ti(p, —p;
P
0
g I €)|,=0 but the term (p?~ A~2p%) - ri(p, —p; g, 1, €)l,=0 has to be subtracted.
/4

In such a way one avoids renormalization of A (the kifetic energy part of the renor-
malized Lagrangian will be of the same form as in (1.0.2)).
The condition for standard subtractions to produce finite VF reads

d.(n)+1 > dfn, ¢ L) (L.1.6)

and below we shall find the region of ¢ in which this holds. In order to convince oneself
about the validity of this statement let us take as an example the case when d, is a number
(irrational, in general) from the interval [0, 1) i.e. that just one subtraction will make the
contribution ot the VF UV finite. The (I.1.6) means then that d, = 0 because d, = d.(n)
are the integer numbers and the number of required subtractions equals one accoding
to the d, as well as according to the d.. The reasoning proceeds analogously if d, € [1, 2)
and so on.

Let us check now for which values of ¢ the condition (I.1.6) holds. This condition
reduces to

n—2> (e~3)L 1.1.7)

from (I.1.4) and (I.1.5)). The most restrictive case is that of n = 1 (we restrict ourselves
to n > 1 as we will not analyze the vacuum functions in this paper). Hence, the condition
(I.1.6) surely holds for ¢ < 3—1/L,,,, where L;, = 4. However, this restriction will not
be good enough for our purposes as the analysis for VF with insertions [10] will show.

2. Standard subtractions for vertex functions with insertions

Although in the regularized Lagrangian (1.0.2) the @[ ]2 term belongs to the kinetic
energy, the VF with insertions (with zero momentum transfer to the graph) of this operator
((1",2‘”, o0126(8 1, €)) will appear when one will differentiate VF I's* with respect to the
cutoff 4. More precisely, the ADVO (cutoff differential vertex operations) for the I'3"
function will lead to VF with insertions of operators

01 = (Pz’ 02 = 974’ 03 = e, 04 = (PG,

1+¢ 2+2¢ 3+¢ 3+3¢
05 = (pzu(pz’ O = (Ps;
4+2¢ 4+4¢
0, =¢0%, 0= ¢°e°, 0y= ¢ (1.2.1)

5+¢ 5+3¢ 5+5¢
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(in the second rows we have listed their canonical dimensions). All these operators are
needed also as counterterms in the construction of the renormalized I i:',mzq,(g, i, &)
according to the standard subtractions (the normal product in the sense of Zimmermann
and Lowenstein [11]). Moreover, the VF with arbitrary numbers of insertions of these
operators will be also needed for carrying out the process of reintegration with respect
to A (see Part IT). Let us notice that at ¢ = 0 the Os and Og4 have smaller dimensions than
the 0,, Og and O,. This is in contradistinction to the ¢}, , theory, where in an analogous
group of operators only those with equal dimensions (at ¢ = 0) appear.
All the operators (I1.2.1) are written in the form

0; = ¢ [1"¢™. (1.2.2)
For their dimensions it will be convenient to write
dim O; = q;+¢b,, (1.2.3)

where the maximal g; are the a; = ag = a3 = 5 (b; < @).
The insertions of the operators O; taken into account, the ‘““typological” relation
(1.1.2) becomes

6V+2 Y s;—2n=2I (1.2.4)
i=1
and (1.1.3) generalizes to
L'=I-V—-a+l, 1.2.5)
-
where « = 1, 2, ... denotes the number of these additional vertices, I’ = I+ ) s; denotes
i=1

the number of internal lines in the graph and

L=L+ Y s—a (1.2.6)

i=1

is the number of loops (L' > L). We find that the superficial degree of divergence for
contributions to I'}% i...(& 1, €) (the subscripts 7,j, ... denote the insertions of the
01'3 Ol’ ooy i == 1, ey 9, j = 1, ey 9, ) iS

d(n, &, L o) = (e=3)L—2n+2 Y 5;+2 ), ri+6(1—a) 1.2.7)
i=1 i=1
and the conventional degree
d(n,o) =dI%,; (Bure=0)=—n+ Y s;+2 Y rn+31—=0). (1.2.8)
i=1 i=1

The condition for the standard subtractions to give also finite VF with « insertions
reads

d.(n,0)+1 > dyn, e, L, a), (1.2.9
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what constitutes the obvious generalization of (I.1.6). From (I.2.6) and (I.2.7) we get that
the (1.2.9) takes place for

a+V 1
- —. (1.2.10)

e <242
L L

Thus, for ¢ < 2 (1.2.9) is certainly satisfied because «+ ¥ >= 1 for any graph.

Let us only mention here that in the A DVO for VF with insertions will appear VF
with insertions of operators different from O; listed in (I.2.1) but still having the form
(1.2.2). From the general formula (I.2.10) it is clear that for ¢ < 2 the standard subtraction
scheme is sufficient also in this case.

The fact that only for

0<e<?2 (1.2.11)

the (minimal) standard subtractions produce the VF which are free of e-singularities will
not affect the process of reintegration of A DVO which leads to large A-expansion and,
consequently, allows one to study the A — oo limit for the VF. Namely, it will be sufficient
to know that in a certain region of ¢ > 1 the VF are singularity free (see analytic contin-
uations from ¢ > 1in Part II). Let us recall that standard subtractions in the regularized
@4.. theory allow one to define the GF of its nonrenormalizable counterpart for
£ (0, 3) [1].

3. Renormalization conditions

We will renormalize the VF on the mass shell, i.e. on zero external momenta. Before
quoting the renormalization conditions for conventionally divergent VF let us indicate
that IR degrees of divergence d;(I'i'(g, p, €)) (di(Fi',',., 5.8 u, ) for the VF with
d.(n) >0 (d.(n, @) > 0), see (I.1.4) ((1.2.8)), are greater than zero for ¢ > 0. In fact,
the IR power counting gives

48, 1, 8)) = 3—n+eL (1.3.1)
and
di(Ffl','i,j, (ga K, 8)) = 3(1 —‘d)— n+ Z S,'+2 Z ri+ ELI. (132)
i=1 i=1

For writing the renormalization conditions it is advantageous to control the dimen-
sions (in units of mass) of VF. These are

dim I'*"(g, u, &) = 3—n—e(n—1), (1.3.3)
dim I’i',',-,jm(g, U, €) = 3—30—n—egn+a—1)+dim 0;+dim 0;+ .... (1.3.4)

We renormalize by setting zero for divergent VF with odd number of derivatives and

0 ,
F121(09 0; g, U, 8) =0, 5? Fi(p’ —P;8& K 8)|p=0 =1,

r*0,0,0,0;g, 1,8 =0, I%0,0,0,0,0,0;g,u,¢ = —igu 2. (1.3.5)
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For the divergent VF with single insertions of the operators listed in (I.2.1) we impose

I",zu((), 0; ga Hs 8) = (Sih V ia

4 . o
P Fi,f(p: —P & K 8)|p=0 = 0;3, i>2,
op

e \? , .
(a—p2'> Ffl,i(p: —D & I, 8)ip=0 = 251'7’ L > 6:

rj,i(oa 0: 09 03 g’ ll, 8) = 5i27 l > 19

0 .
FPe Tidp, —p,0,0; 8 1, )Mo = &5, i >4,

Ffl,i(oﬁ 0’ 09 05 0~ 0; g, U, 8) = 5i4! i> 2,

-~

¢

grfl,i(pa - P 0.* O> OaO;g’ 1, £)§p=0 = 5585 i> 6’
op

r%40,0,0,0,0,0,0,0; g, p,6) = 6, i>4,
r3%0,0,0,0,0,0,0,0,0,0; g, u, &) = ;9, i> 6. (1.3.6)

For the sake of completeness one should also quote the remaining renormalization
conditions for VF with double, triple and even for a VF with more insertions of the
operators from (1.2.1). However, the VF on zero external momenta with more than one in-
sertion must vanish because then no trivial one-particle-irreducible graphs exist. Therefore,
such renormalization conditions will be useless for our purposes as e.g. for the determination
of coefficients in A DVO for VF with insertions. Let us end this section with the assertion
that standard subtractions with these renormalization conditions specify the VF of the
regularized theory for any value of ¢ e (0,2). From here on we shall speak only about ¢
in this region.

4. Differentiation with respect to the cutoff

For the analysis in this section it is advantageous to note that in the Feynman rules
as well as in the renormalization conditions the parameters u and g appear only in the
combination gu % and, consequently, the renormalized VF can depen don these param-
eters also only in this particular combination.

The cutoff A can be of course treated as a parameter in the renormalized Lagrangian
corresponding to (1.0.2) and then the parametric derivative identity (the 4 DVO) [11]
satisfied by perturbatively renormalized VF can be shown to read

9

0
A FA' Ffln(g’ H, 8) = Z ci(g’ A, o, B)Fi’,‘l(g’ H, 8)' (141)

i=1
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The formula (I.4.1) follows most naturally from the functional approach and its derivation
is strictly analogous to the one given in the original Symanzik paper [2]. The fact that the
summation in (I.4.1) runs over all operators which were listed in (I.2.1) is explained in
the Appendix to Part II.

It is easy to check that

dim c{g, 4, u, &) = 3+6—dim O;. (1.4.2)
Because in ¢; only integer powers of gu~ % can appear we must have
ci(g, A, p, 8) = AT O (guT 2N ) (1.4.3)

where c¢,(z, ¢) are integer power series in the variable z.

Let us notice that at ¢ = 0 the ¢,, ¢s and ¢¢ are proportional to odd powers of A
whereas in coefficients of 4 DVO for the analogously regularized ¢} ,, only even powers
of the cutoff (at ¢ = 0) are encountered).

From the renormalization conditions we get

ciL=¢C,=C3=0¢=0 (I.4.4a)
and
L0 0O
es(z,8) = A*F 31 5 rip, —p,0,0; g, 1, &)l p=0 (1.4.4b)
G,
coz, 8) = A2+ 7 1'%(0,0,0,0,0,0,0,0; g, u, &), (1.4.4c)
3 a a g 2
C7(Z, 8) =4 6_/i 6p2 FA(ps —-P; & H 8)|p=0
a\? d\?
—¢Cs (é‘p?) I'isl=0—c¢e (6;7) Ihelo-o0s (1.4.4d)
3+2e a a 6 .
CS(Z, 8) =4 a‘ a—pi FA(P’ —D 0, 03 090’ g N, 8)]p=0
~cs—5 TS sl =0_c6’a_zrfi 6lp=0 (1.4.4¢)
op* 77 op* " '

d
cofz, 8) = APH* =i rto,0,0,0,0,0,0,0,0,0; g, u, &)

— s s1,-0—cs sl p=or (1.4.4f)

Hence, the c(z, €) have perturbative expansions

ez, &) = 2id;;+ . kz.,, cu(e)Z* (1.4.5)
= in i
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with ki 5 = Kmin 6 = Kmin 7 = Kmin s = 2 and k,;, ¢ = 3. The coefficients c;,(¢) must be non-
singular for ¢ € (0,2) because of (1.4.1) which relates (UV) perturbatively renormalized VF.
One can easily check that the ¢;(¢) with i # 7,9, 8 are also free of IR singularities there.
Namely, the A-differentiations in (I.4.4) are always adding two to the IR degree (1.3.1), re-
moving thereby IR singularities which are expected for ¢ < 1/L and & <{ 2/L in the graphical
contributions to the VF in (1.4.4b), (I1.4.4c) and (1.4.4d), (1.4.4e), (1.4.4f), correspondingly.
However, in the formulae for ¢, cg, ¢y the terms without the A-differentiations are IR-sin-
gular for ¢ <C 1/L. These IR-singularities are coming from the terms proportional to ¢s, ¢
and they disappear for ¢ > 1/L. It might well be that they are absent also for ¢ < 1/L —
we postpone this problem to a more careful study. In the present papers we are concerned
with UV structure of the theory. Therefore we will isolate e-poles in ¢, cg, ¢o corresponding
to IR-singularities and we will consider only the remaining part of ¢4, cg, . In other
words, we proceed as if

2\ 2 Y 2
Cs (5};) I slp=0+¢s <—0172> Ii6lp=0s

0
6 6
Cs ﬁapz FA,S[p=O+C6 “ap‘z‘ rA,6lp=0’
.10 10
csl g sl=0+ ¢l 46l 5-0s

were equal to zero. Thus, apart from IR-poles, ¢;(¢) are analytic functions of (g).

The analyticity of c¢,(¢) does not imply that the whole perturbative series (1.4.5) is
analytic. However, following Symanzik, we assume that also the c¢f{z,¢) are analytic
functions of ¢ in the interval (0,2).

In Part II of the present investigation we shall analyze the problem of the removal
of the cutoff.

The list of references is given at the end of Part II.



