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Symanzik’s method of renormalization is applied to construct Green’s functions of
the nonrenormalizable massless @3+, theory. The unmodified method leads to the expansion
for vertex functions in four dimensions which contains logarithms and also square roots of
the coupling constant. Higher terms in the quasi-perturbative expansion are analyzed.

1. Strategy of the A — oo limit

In Part I of the present work we have formulated the regularized version of the mass-
less scalar ¢S, ,, ¢ > 0, theory. The regularization was imposed in terms of the ultraviolet
(UV) cutoff A, see (1.0.2) (in this part we are referring directly to the formulae of Part I).
We have also limited ourselves to ¢ < 2. All these were intermediate steps in the effort
to define Green’s functions (GF) for the UV nonrenormalizable theory. We have also
analyzed the differential vertex operation 4 DVO where A is the parameter with respect
to which differentiation is performed.

Now we shall try to see how the vertex functions behave when A — co. Following
Symanzik, to study the A — oo limit, we integrate the identity (I.4.1) with respect to A.
For this purpose we write the identity (I.4.1) in the notation (1.4.3):
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where we made use of (1.2.3) and (I.4.4a) and where, we recall, a5 = a5 = 4,
a7 = ag = ag = 5,bs = 2,bs = 4,b; = 1, bg = 3, by = 5. Let us stress that this identity
was derived in the (renormalized according to the standard subtractions) finite order
perturbation theory and therefore after integration over the values of A which include
A = oo can hold only for ¢ < I/L (cf. Section 1 of Part I). Hence, the integrated identity
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is valid only for perturbation orders V < (n—1)/2+¢&! (from (I.1.3) with (1.1.2)). The
h2"(...) is the integration constant corresponding to I'2"(...) in perturbation theory. The

4
fact that the j di... integral in (I1.1.2) vanishes at A = oo follows from the fact that the

integrand for the finite perturbation order decreases at A — co. This decrease follows
from (1.4.4) with (1.0.3) as far as the ¢,(...) are concerned and from the observation that
for the I %’i a large-A expansion analogous to (1.0.3) also holds. From comparison of (1.0.3)
with (I1.1.2), both at 4 — oo, we get that the A2"(...) equals the A-independent term in
(1.0.3). Namely, the double sum there can vanish at A — oo only if —1+&k < 0 which,
in view of k <{ L, is in fact true for ¢ < 1/L.

Now we are going to write a formula for the VF analogous to (I1.1.2) but which
would be valid in the whole interval (0,2). This will be the crucial step because then the
consequent formulae will allow us to prove that the I'3" exist also for A = o and ¢ € (0, 2)
if some simple conditions are satisfied. Roughly speaking, we shall indicate thatat 4 = co
the r.h.s. of appropriately modified formula (I1.1.2) can be finite but different from 2"
and e-singularities of the 42" will be cancelled by singularities of the remainder. The most
natural way hereto is to continue analytically the r.h.s. of (I.1.2) from & < 1/L. The “non-
renormalizable” h3" can have of course no worse singularities than poles at ‘rational
& = 1/L so that the analytic continuation will not affect its functional form and for ¢ € (0, 2)
we write

(g, n, &) = h3'(g, u, &

a.c. A 9
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(‘““a.c.” stands for analytic continuation which, of course, can make sense only for finite
perturbation order). The fact that we have to continue just from ¢ < 1/L reminds us that
also the evaluation prescriptions of Part I were perturbative, i.e. depending on the order
considered. The analytic continuation in (IL.1.3) is nontrivial because this can destroy
the form of the integral as a matter of fact for any ¢ but for perturbation orders
V = (n—1)/2+¢". Therefore, it will be natural to try to represent the integral in (11.1.3)
in the form of another analytic continuation from a region not depending on the pertur-
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bation order. This being done, the continuation from & < 1/L will become superfluous
and consequenly formulae will not depend on the perturbation order. This means that
our final results will concern the global properties of the GF and not apply only to the
corresponding perturbative contributions. This feature will let us to discover, taking
(IL.1.3) as the starting point, such properties of the I'2" which by no means could be seen
in perturbation theory.

2. Reintegration with respect to the cutoff

A
For the analytic continuation of the integral { dA... in (I.1.3) we integrate by parts:

A A A
f i ... f di%l’ = f(Hrme - f di “f(/l),
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specifically setting

A
f) = [ dss® O D gy~ 252 ),
i.e. we write
A A
[ dh ... = T2(g, )  dAA2™ "0 D gu=2432 o)
A 2 A
ar¥(g, u, _ B}
- 'fdzL(;ii) J dss? ™ H 0= Dg (g~ 28528 gy 11.2.1)
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In this Section we shall concentrate on the first term in (I1.2.1), referring to the second
one as to the higher term to be briefly discussed in Section 3.

r i”,(g, U, &) in the first term on the r.h.s. of (I1.2.1) does not require continuation
because 1t is singularity free, by constructlon (see Part I). Let us note that if for integration

by parts jds were used instead of j ds... as above then we would now have I ﬁ,f' {g, 1, &)

@

in place of Ir'y(g, u, &) in (IL.2.1).
4

For writing a continuation for the integral | dA..., in the first term on the r.h.s. of

0

(IL.2.1) , we are in turns using analyticity of the c;(e) in (1.4.5), the fact that series there
begins with kin s = ... = kpins = 2 and ki, o = 3 and the (assumed) analyticity of the
¢z, ). Under the additional assumption that

§ duz—'ai—e(bi—1)[ci(gu-28,125, €)—2id;] = 0 (I1.2.2)
°
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we can represent the integral in question as
_ iéi—;A—z +u—3—ag-s(b;-— I)g(a;-3)/2€+(bg—- 1)/2

ao

X { Z [3—a;+e(2k+1—=b)] cule) + i S{gu~*A%, e)} , (I1.2.3)
k=kmin ¢
where
Sigp~2 4%, ¢)
a.c. \ oA
= | from dzz @=L e (7 6) ~2i6,,]. (I1.2.4)
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The expression (I1.2.3) contributes to I';"(g, i, ¢) and therefore the singularities at rational
values of ¢, as displayed in (I1.2.3), cannot appear in I'2*(g, u, £) which was argued to be
nonsingular for ¢ e (0, 2).

Let us anticipate here that expressions like (I1.2.3) with the characteristic factor
p3Teebim D) gaim3)/2e+ (i D/2 ncluded, will appear within analogous analysis for
r i',',-(g, U, €) which multiplies the presently discussed integral and identical factors will also
appear for all l"i','i, i.(g, p, ). This observation, together with an extension to the higher
terms in (I1.2.1), makes it possible to organize the expansion for I'3"(...) in terms of these
characteristic powers of p and g. However, in this paper we will write such an expansion
only for the 4 = <o case. Let us also mention that subsequently taking expansions for
r ,Z,Z'i,j,__.(...) (with increasing o) into account (when expanding I'3"(...)) shows, in contra-
distinction to what the formula (I1.2.3) alone suggests, that the functions of A of the type
(I1.2.4) will contribute also to the residua of I';"(...) at rational values of ¢. Hence, the
A-independent parts of these residua can cancel against corresponding residua in the
hZ"(...) while the A-dependent parts must mutually cancel among themselves.

Already it is seen that in the 4 — oo limit one can get finite corrections to h2"(g, u, €)
only if the integral

dzz {H3-ainrje—(U1 +bi)]{ci(z’ 8)—255”]

s oy 8

converges in a subinterval of (1, 2). If so, the analyticity of ¢;(z, £) being assumed, we shall
be able to define the analytic continuation for all ¢ e (0, 2). Namely, we can then write

9
I-Zn _ h2n | 3—~ay—e(bi—1) (ar—3)/2e+(b;i—1)/2
U;v(g’ i, 8) - o (g’ Hs 8)+ 14 g

i=35
«©

1
X [ (B—a)+ek+1—-b)) ‘eule)+ % Si(s)] I'Z" (g, u, €)+ higher terms} ,
: / e
k=kmin

(11.2.5)
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where
ac. \ &
S{&) = | from J dzzHC=aE= e (7 £) —2id;1] (11.2.6)
e>1/4y

are the first five Symanzik’s constants for the ¢$,, theory which were promised in the
Introduction (see Part I). These constants are not expected to be plagued with e-singularities
but would be of course infinite if for ¢,(z, ¢) the truncated expansions (1.4.5) were substitut-

ed. Let us notice that if we assumed that the { dA... integrals of (I1.2.2) were just finite and
0

not necessarily equal to zero then their constant values would have to be added to Syman-
zik’s constants (I1.2.6). In formula (I1.2.5) it is of course understood that for the I’ fo",i(...)
analogous expression to that which was obtained above for I'’" should be substituted.

3. Expansion for vertex functions in the A = o case

From what has been said up to now we have seen that the information about 4 DVO
for VF with multiple insertions is necessary for studying the A-dependence of I'2"(...)
itself. It can be shown (see the Appendix) that

9

¢
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+ Y rlguT A, @At Ty (I1.3.1)
4

analogously for I i”i,k, i=35,...,9 k=235,..,9 and so on. Hence, in the higher term
A 5 A
[ _er: ¢ _
| dl—éz—’ J dss?um s b= Vg (g~ 2520 4 (IL3.2)

oo =)

which has appeared in (I1.2.1) we can insert (I1.3.1) and it will be advantageous to write
(11.3.2) in the form

A 9 4
§ da kz_js AR O DR, T i+ § dA ZI AT e el (113.3)

with
A
fu(4, &) = Ck(gll_u}-ze, &) j dss? 4720 1)ci(gu—2esze’ g),
a
gL, 8) = ri(gu™ %A%, &) [ dss®> ¥ e(gu™ 5™, ¢), (11.3.4)

because both terms in this formula are now analogous to the A-dependent part on the
r.hs. of (I1.1.2) and from here on identical reasonings to those leading from (II.1.2) to
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(I1.2.5) can be simply repeated, with ¢; replaced by f,; and g,;. A next-to-higher term

A A
- ari»ni,k 2—a;—e(bij—1)
di 2t | dss* e £, S, ©) (11.3.5)

will appear thereby from integration by parts and so on. This is the reason why in Part 1
we were also checking the analyticity properties of VF with arbitrarily many insertions.
The procedure of taking into account the 4 DVO for the VF with a growing number
of insertions reveals at A = oo additional nonperturbative constants similar to the constants
(I1.2.6). They arise because of the second term in (I1.3.1). Thus, one can speak about the
A = oo case only if one assumes that all these constants (the Symanzik constants) are
finite.

The expressions at 4 = oo for the VF with insertions differ from (I1.2.5) and from
each other merely by obvious changes in notation. In particular,

onn'i — h%:l_l_ é {u3"aj"£(bj—l)g(aj_3)/26+(bj"l)/2

X [ Z (B—a;+ek+1-b)) " 'cp(e)+ g;Sj(a)] Fﬁ,",i,j}

k=kmin s

+ E {HS—az—a(br'i)g(az—3)128+(bz‘1)/2

1

X [ Z B—a;+eQk+1-b)) Teple)+ ;;S,i(e)il I’if',,} + {higher terms} (11.3.6)

k=kmin1

fori =5, ..., 9, analogously for I i", ; and so on. When such expressions will be substituted

in (I1.2.5) then it will become clear that also the singular parts of the corrections to A3"(...)
at 4 = oo must contain the nonperturbative constants. To conclude, in Symanzik’s
approach one can establish by perturbation theoretical methods merely the locations of
e-poles in separate contributions to the I'2(g, o, €).

The observation that the pu?~%g /2t factors appear systematically in the above
procedure allows us to reorganize the expansion for I'2* (which up to now was given in

terms of a growing number of insertions) accordingly and argue that

(g, pe) = Zo pIig" (g, p, ©), (11.3.7)
-

where

h"(g, i, €) = z.o (e g®)'hii(e) (I1.3.8)
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for j > 0 and the j = O term is the #2"(...) of before. The fact that hf"(g, u,8,j>0,is
the half-integer power series in the coupling constant (and not integer power series as in
@44, theory) follows from the observation that among the factors pu~*®i~Dg®* 1)z
except for those with odd b4, bg and by, also those with b5 and b¢ which are even occur
and bs = 2. h3"(g, u, €), j > 0, now contain (products of) Symanzik’s constants and all
other similar constants.

In all of the discussions up to now we kept ¢ generic, but the expansion (I1.3.7) is
expected to be free of UV e-singularities for arbitrary ¢ € (0, 2). Hence, the singularities
appearing in I'2"(...) at rational values of & must cancel, giving rise to logarithms of the
coupling constant. The physically interesting case of four dimensions (¢ = 1) will be
treated as the special case of ¢ rational.

In order to illustrate how the logarithms arise at ¢ = 1 let us consider, as an example,
a contribution to A3", j > 0, of the type (u™%g"/?)"(e—1)"". This gives a contribution to

2 of the form p~’~*'g/2**¥2(¢—1)-1. This singular term can be cancelled (at ¢ = 1)
by a term precisely equal to —u~"g"'?(e—1)-! with N = j+/ Such a term can originate
from A2" or from another hf.", Jj >0, if j+1is even but must stem from another hf-", j>0,
if j41is an odd number because the 42" can only have integer powers of g. One can easily
find that

llm [(8— 1)— I(M—j—elgj/23+l/2 __u—j—lg(j+l)/2)] ~ ”—j—lg(j+l)/2 ln (gj/ZM—l).
e>1
Hence, in four dimensions the singularities are cancelled, leaving behind the logarithms
of the coupling constant, i.e. the expansion (I1.3.7) reduces to

r’g, pe=1=hi(gme=10+ Y (loggVH"(g, pe=1). (IL3.9)
i=1
The functions H f"(g, i, ¢ = 1) can be the power series in the square roots of the coupling
constant, as the hf-"(g, i, ¢ are for j > 0 and ¢ generic. At the present time we do not
see any reasons why the hf," of (I1.3.8) with j+/ odd should have no finite parts at 8 = 1
nor why the cancellations of singularities for the hf,"(s) with / odd could not take place.

Outlook

One could expect that when original Symanzik’s methods will be applied to give
meaning to Green’s functions of the massless ¢3,,, £ > 0, theory then this will lead only
nonsignificant modifications to compare with the known results for the massless ¢j.,,,
¢ > 0, theory. However, the main stream of the arguments (i.e. the A DVO with coefficients
determined from the renormalization conditions in the regularized theory) did not exclude
the odd powers of the cutoff A in the large-A expansion for the vertex functions of
the regularized theory as well as the half integer powers of the coupling constant in the
expansions (II.3.7) and (I1.3.9) for vertex functions of the nonrenormalizable massless
@5+, theory. These two features and IR difficulties in (I.4.4) constitute the main difference
between 5., theory and ¢, theory. From the technical details of our exposition it is
clear that these differences would not be encountered if the coefficients ¢s and ¢¢ of the
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cutoff differential identity (I1.4.2) were zero. However, results of explicit calculations for
fowest order contributions to ¢s and ¢ (from (I.4.4b) and (I.4.4c)) are different from zero
and we do not see any reasons why these coefficients should vanish.

The main achievement of Symanzik’s approach to the problem of removal of diver-
gences in Green’s functions of nonrenormalizable quantum field theory so far is the reduction
of a “renormalization of the nonrenormalizable” to a problem of existence of improper
one-dimensional integrals (Symanzik’s constants). For the norenormalizable massless
@5 .. theory the simplest of these are given by the formula (I1.2.6). Hence, the whole prob-
lematics is open anew and a lot of work will have to be done to determine whether Syman-
zik’s approach is satisfactory or not. In particular, all of the discussions above are far
from being complete until some essentially nonperturbative methods will be invented.
Within Symanzik’s framework such nonperturbative methods are to be applied for
checking the consistency of some of the assumptions (see e.g. (I1.2.2)) and for computa-
tion of expressions like (I1.2.6) (Symanzik’s constants). Another urgent problem is to
generalize Symanzik’s approach to massive field theories in order to avoid infrared
difficuities.

APPENDIX
The derivation of the A DVO (1.4.1) and (11.3.1)

We shall start with Lowenstein’s differential vertex operation [10], [11],

a 2n ack 2n
4 E“A' FA,i, i = —6;1— FA,i, ves DLkl (1)

3

for the VF with an arbitrary number of insertions with zero momentum transfer to the
graphs. In this formula ¢, and [/;], are defined by the renormalized Lagrangian L, of the
theory,. namely

L= ~i ; el llas ¢))

where [/ ]; are strictly operator parts of the Lagrangian L, i.e. all coefficients (apart
from the combinatorial ones) are included in ¢,. The brackets [ ]; denote that the operators /;
have ascribed degree 3 (whereas their canonical dimensions can be different from 3). In
our case, [, are equal to O,, 0,, O3, O,, O, in notation (1.2.1).

In formula (1) it is assumed that all operators /, have ascribed degree three, whereas
in the formulae (1.2.1), (IL.3.1) /, are supposed to have degree equal.to their canonical
dimensions. The appropriate change of the degrees of the operators /, can be achieved
by making use of Zimmermann’s identities [9], [11], [12]. For VF with only one insertion
these identities read:

9
2n

2n _
Iitonren = ‘21 al 50,
i=
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H

I, = Z b T,

»

FA T4y = FA ,0p (3)

i

1]
-

where the coefficients a;, b;, e; can be determined from the renormalization conditions
(1.3.5). The identities (3) can be written in the general form

9
ry L0513 = .Zl H i ,0: 4)

Substituting the identities (3) into the A DVO (1) with « = 0 one obtains formula (1.4.1).

Let us mention that in the first of the formulae (3) the integrated normal product
[p[1*¢ls is undersubtracted because it has degree 3 < dim @[?¢. However, this does
not lead to difficulties because the propagator in graphs is regularized according to the
Lagrangian (1.0.2).

The Zimmermann identities for VF with more than one insertion are much more
complicated and we do not quote here these rather lengthy formulae (see Ref. [12]). We
mention only that the general form of this identity for VF with two insertions is

9

Fi’:‘[os]dyok = Z A O 0k+ Z A Op (5)

i=1

where on the r.h.s. all operators have ascribed degrees equal to their canonical dimensions
and a; are the same as in (4). The operators O, are scalar operators with dimensions satisfy-
ing the inequalities:

dim O,+dim 0,—3 > dim O, > d+dim 0,—3 if d < dimO,,
d+dim 0;—3 = dim 0, > dim O,+dim O0,—3 if d > dimO,.

The formula (I1.3.1) is obtained by substituting the identities (5) to the 4 DVO (1) with
o = 1 and by dimensional analysis for r; analogous to that leading to the formula (1.4.2)
for ¢;.
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