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Exact solutions of nonlinear generalizations of the Kiein Gordon equation analogous
to multi-solitons of classical theories are constructed. The number of distinct solutions
of this type is shown to be dependent upon the dimensionality of space-time. Some of the

solutions are localized in 3+ 1 dimensions and are time dependent generalizations of single
peak confined solutions.

In the past few years a remarkable number of exact solutions of nonlinear field equations
have been found. The field equations studied have been diverse—ranging from Korteweg—de
Vries and nonlinear Schrédinger which are first order in time to sine Gordon and nonlinear
Klein Gordon which are second order in time. The variety of solutions include single
and multi-peaked functions with plane symmetry—solitons—and static and time depen-
dent solutions with spherical symmetry--instantons [1].

In this paper we discuss multi-peaked localized and semi-localized solutions of the
nonlinear Klein Gordon equation

0,0"®+m*®d+ 10> = 0. ¢))

The number of dimensions is arbitrary. These solutions are time dependent generalizations
of Goldstone solutions [2] and various solutions appropriate for confined systems [3].
Solutions of field equations with more general polynomial and non-polynomial inter-
actions will be discussed elsewhere [4].

The method of constructing multiple soliton solutions of Eq. (1) is a special case
of the method of base equations in which a solution of a nonlinear partial differential
equation is found in terms of solutions of a linear partial differential equation [5]. The
method is applicable to equations with polynomial or nonpolynomial interactions and
in any dimensional space-time [6].
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A solution of Eq. (1) is
® = u(1—iu?/8m?) ™' = uD™1, )
where u is a solution of the Klein Gordon equation
8,0"u+m’u = 0 3)
subject to the restriction
o, ud"u+m*u® = 0. @
The proof is by differentiation [5]. A useful identity is
ud, D% = 2p(0,u)D """ (Au?[8m?) = —2p(B,u)D "™ (—1+1—(1u?/8m?))
= 2pD™?"'3,u—2p(6,u)D". (5)
Using Eq. (5) one has
0,9 = —(@u)D™ ' +2(8,u)D™? 6)
and
0,00 = —(9,0"u)D™ " +2(0,0"u)D™* —2(8,u) (F“uyu” '(D"*~D"")
+8(8,u) (6*u) (Au/8m*)D ~>. 7
Using Egs (3)-—(4) one has
0,00 = m*®—2m*uD" > +2m*uD"* -2m*uD™ ' —i®> = —m*®—A1d°, ®)

which is the desired resuit.
An n soliton solution for & c¢an be constructed by letting

M=

u, = ae )

i=1

where

w = (—m* kD),  (m* #0, k? #0), (10)

-

ki X = kioxo—Ei * X. (11)

The a; are arbitrary constants while the four vectors k;, in order to satisfy Eq. (4), must
satisfy

m2+ki ° kjaiaj = 0. (12)
Two specific conditions implied by Eq. (12) are of sufficient importance to display at the

outset. These are

ki # —k;, ki k;#0 (any i,j). 13)
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In addition to restricting the relative magnitudes of the components of the set {k;}, Eq. (12)
also limits the total number of different «k; and thus the multiplicity of the solitons. The
number of components of n vectors is 3, while the number of pairs (i # ) in Eq. (12)
is n(n—1)/2, so the system is not overdetermined if

3n = n(n—1)/2, - (14)
n<T7 (15)

Hence, the maximum number of distinct functions e**** occurring in u, of Eq. (9)
is 7. Of course, the arbitrary constants a; can be adjusted to obtain different forms for u,,
but these forms will contain no more than 7 different ;. More generally, if the dimensionality
of the space is p, Eq. (14) becomes

n, < 2p—1. (16)

However, in 141 space, Eq. (12) is even more restrictive. In this case it is easy to see
that Eqs (12)—(13) imply
kifkio = kj/kjo 17

and further that the algebraic signs of the corresponding components of k; and k; are
identical.

From Eq. (17) it is easily seen that the arguments of all the functions in Eq. (9) are
identical in 1+1 space, ie.

arg; = (_mz/kiz)x/zki X = (—mzklz'o/kizoka')uz(kio/kjo) (kj "x) = arg;. (13)

Thus, in 1+ 1 space there is only one solution of the type given in Eq. (2) and Eqs (9)—(13).
The solution may be localized or nonlocalized, depending on the signs of m?/4 and —m?/k2.
A particular case is given below.

In spaces of higher dimensionality, Eq. (12) can be solved for the direction cosines of
the angles between Ei and k ;- The result is

cos 0;; = vw;[(v7 - 1) (v] ~ 1)]'/3, (19
where
o = k1K) (20)

To insure that cos 0;; lies between — 1 and 1, the phase velocities v; must satisfy restrictions
determined by whether the &, are timelike or spacelike. The basic inequality may be written

_1‘_011711 < i{(v,’z_l) (v‘?_l)]l/z < l—ﬁ‘vj. (21)

From inspection of the center term in the inequality it is evident that to insure cos 6,;
real all k; must be spacelike or all timelike.

Consider first all ; timelike, so all |v;] > 1 (with no loss of generality, take all £} > 0).
The right side of Eq. (21) is negative, so only the minus square root is acceptable. The
inequality may be reversed to give

vw;+1 = [0} - 1) (07 - 1D]'? > v, - 1. (22)
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Squaring, one finds

0= (vi—0)’ (23)
which is nonsense unless v; = v}, all i, j. But this requires from Eq. (19) that cos §,; = 1
(recalling that for timelike k only the minus square root in Eq. (19) is acceptable), hence
all k;, k ; are parallel. That is, the solutions are effectively 1+ 1 dimensional and, as shown
above, reduce to a function of a single variabie®.

The case of special physical interest occurs for all k; spacelike, so all |y;] < 1. The
interest in this case stems from the fact that the solutions are (semi) localized and non-
singular for A < 0 and m? > 0 — that is, for Goldstone-Higgs types of theories. The 1
soliton, by suitable choice of a in Eq. (9), reduces to the well known single lump solution

@ = (—2m?|2)? sech ak - x. (25)

For arbitrary spacelike k; in the general case the inequality in Eq. (9) is satisfied for all
lv;i < 1.1Itis clearly possible to transform to a Lorentz frame in which the time component
of one k;, say k,, vanishes. Thus, the n soliton contains a static lump which is localized
along the k, direction. Furthermore, from Eq. (19) cos 0;; becomes

cos 0;; = +(1—oH)'2 (26)

Now, if all k ; are parallel to Ky, Eq. (26) requires all v; to vanish and once again, from
the arguments given in the 1+ 1 dimensional case, the n soliton reduces to a 1 soliton.
Perhaps the solutions given in Egs (2), (9)—(13) should be called “collapsons™ to describe
this property.

For n > 3 it is possible to choose a linearly independent set of Ei in 3+ 1 dimensions.
However, the restriction, Eq. (13), excludes the solution with mutually orthogonal Ei
(it is easy to see that the expressions for cos ;; are incompatible for this case). A 3 soliton
with non orthogonal k; which is localized and non singular for A < 0, m? > 0, is

3
Py = .Z,I D3, 27
d)Si - aieaeki'xD—l = a»iev?iD‘l (28)
with
3
D = 1—-(48m?) (Y ae®)’. (29)
i=1

The linear independence of k; insures that the y,; are independent variables for arbitrary x.
Evidently, as y; varies over its range (—o0 < y; < 00)®;; is bounded. Furthermore, as
w; (i # j) varies over its range ®;; reduces at most to a bounded function of the other two
variables?.

! A similar argument can be made for any pair ki, k; for which the sign of the time components

is opposite, hence vi< —1, vj> 1. The conclusion in this caseis |v;] = {vl, implying k; antiparallel to 7c',-.
2 Pursuing this argument one can show that the solutions in Eq. (27) consist of incoming waves at
all k; - x = —oo0. These waves propagate along k;, emerging at k; - x = +00, k; - x finite, as outgoing

waves with a phase shift. This is the property expected of multiple solitons. For complete details see
Ref. [4].
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The restriction in Eq. (13) leads to the result that all the multi-soliton functions
described by Eqgs (2), (9)—(13) are time dependent for all k; spacelike. That is, a Lorentz
transformation can take the function to a frame in which at most one k; has vanishing
time component. This lump is the remnant of the single soliton state, so in quantum
field theory the n solitons may be regarded as time dependent expectation values of non-
linear excited states of this ground state.

REFERENCES

[1] The classic review of classical theories containing solitary waves, solitons and cnoidal waves is by
A. C. Scott, F. Y. F. Chu, D. McLaughlin, Proc. IEEE 61, 1443 (1973). This paper describes,
among others, the Korteweg-de Vries, donlinear Schrodinger and sine Gordon equations. Solitary
wave solutions of the nonlinear Klein Gordon equation with polynomial nonlinearities were constructed
by P. B. Burt, Phys. Rev. Lett. 32, 1080 (1974). Spherically symmetric instanton solutions have been
discussed for Yang-Mills theories, A. A. Belavin et al., Phys. Lett. 59B, 85 (1975), for Dirac fields
ny G.t Hooft, Phys. Rev. Lett. 37, 8 (1976), for gravitational fields by S. W. Hawking, Phys. Lett.
60A, 81 (1977) and for polynomial Klein Gordon theories by P. B. Burt, Classical Spherically Sym-
metric Solutions of Nonlinear Field Equations (1977, in press).

21 J. Goldstone, Nuovo Cimento 19, 154 (1961).

[3] Quantization of fluctuations about classical lumps has been studied from many viewpoints. See, €. g.,
G. Rosen, J. Math. Phys. 6, 1269 (1965) and reviews by S. D. Drell, Quark Confinement Schemes
in Field Theory, SLAC-PUB-1683, Ettore Majorana Summer School, Erice 1975 and J. L. Gervais,
A. Neveu, Phys. Rep. 23C, 3 (1976).

4] P. B. Burt, Exact, Multiple Soliton Solutions of the Double Sine Gordon Equation, Proc. R. Soc.
(London), in press.

[5] J. L. Reid, P. B. Burt, J. Math. Anal. Appl. 471, 520 (1974); P. B. Burt, J. L. Reid, J. Math. Anal.
Appl. 55, 43 (1976); P. B. Burt, Exact Solutions of Nonlinear Generalizations of the Klein Gordon
and Schrodinger Equations, J. Math. Anal. Appl. (in press, 1977).

[6] For other methods of construction of multiple solutions see Ref. {1} or R. K. Dodd, R. K. Bullough,
Proc. R. Soc. A, 351, 499 (1976) and references therein.



