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In this paper the bound-state spectrum of the radial Schrodinger equation

(a+1

rz

u(r; K)+ {K’—— --U(r)} u(r;K)=0, u0;K)=0,

is investigated for X2 < 0. First, it is shown that if the wave function describes bound-states
for a continuum of energies, then its derivative becomes unbounded at the origin. This is
possible only if both the linearly independent solutions vanish at the origin and conversely
if they both vanish at the origin, a continuum of bound-states exists. Finally, a necessary
and sufficient condition for the existence of a bound-state continuum is that either (a)
both the linearly independent solutions should vanish at the origin or, (b) the derivative of
the solution which vanishes at the origin must be unbounded there.

1. Introduction

We start with the Radial Schrddinger equation [1]

u'(r; K)+ {K’— I(H;Q - U(r)} u(r; K) =0, 6))

r

where the primes denote differentiation with respect to r. We assume that U(r) is (i) con-
tinuous in 0 < r < oo, (if} - 0 as r — o0 and (iii) has no zeros in 0 < r < ¢ for some &,

feel
Bound state solutions, that is, for which | u?dr < M < oo exist in general only for discrete
0

values of K2 < 0. But in special cases, a K2-continuum of bound states exists for K2 < 0
for example when |r"U(r)| — o as r — 0, for same »n > 2.
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2. Problem

We will show a necessary and sufficient condition for the existence of a bound-state
continuum in the following two forms:

A necessary and sufficient condition for a K?*-continuum of bound-state solutions
of (1) to exist for 0 > K% ¢ D is that, (i) 4,(0; K) = 0 = u,(0; K) for all such K2, where
uy(r; K) and u,(r; K) are any two linearly independent solutions of (1). Or, alternatively,
(i) ¥'(r; K) should be unbounded as r — 0 where u(r; K) is any solution of (1) for which
u(0; K) = 0.

From here we will deduce that for U(r) such that #»"U(r) - O as r - 0 for somen < 2
only discrete bound states can exist.

We observe that a solution u(r; K) of (1) for which u(0; K) = 0, is by Poincaré’s
Theorem, for fixed r, an entire function of K. Moreover, as U{(r) is continuous in
0 < r < o, u(r; K) for fixed K, is continuous in » and in fact, so is «'’(r; K). Hence,
by Hartog’s Theorem, u(r; K) is regular in both r and K. As such, it is uniformly conti-
nuous with respect to r and K [2].

In the sequel we will require the following:

Lemma 1

If u and v are two solutions of (1) such that |u| — o0 and v - 0 as r — o, then there
exist & and ¢, both > 0, for which |exp(—&r)ul - o and exp{cr)v — 0 as r - co.
(In fact, we can see from (1) that u,v — exp(X|K!r) as r > oc.)

Lemma 2

If u(r; K) describes a K*-continuum of bound state solutions for K2 € G C D, then as
r— 0, u'(r:K) is unbounded.

For, let |[4'(r;K) < M for all r - 0. Now,

I(i
W K+ {KZ— e —U(r)} u(ri K) = 0,

L li+1 ,
uWir; K+h+ {(K-H?)‘—— ( t ) —D(r)} w(r, K+h) =0,
,

where (K+h)? € G. Multiplying the first equation by u(r; K+ #) and the second by u(r; K)
subtracting and integrating, we get

[u'(r; Kyu(ry K+)—u'(r; K+hu(r; K)]}
R

= 2Kh | u(r; K)u(r; K+ h)dr+0(h?). 2)

By Lemma 1, as |u(r;K)| and lu(r;K+4#)| < exp(—cr), ¢ > 0, as r = o0, so,

u(R; K)W'(R; K+ h)—u'(R; K)u(R; K+h) - 0,
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R
and | u(r;K)u (r; K+h) dr is uniformly convergent as R — oo, with respect to . Moreover,

u{(r; K) being uniformly continuous in r and K, as u#(0; K) = 0 = w(0; K+h), |u(r; K)| < n
and |u(r; K+Hh)| < 5, n being arbitrary, for |r| < § where § is independent of 4. Also,
as we have supposed that |#'(r; K)| and [o/(r; K+ /)| < M; we have |u'(r; K) u (r; K+ h)
—t'(r; K+ u(r; K)] < 2Mn = {, for |r| < 6 where { is arbitrarily small. Hence, as
R— 0 and ¢ > 0,

2Kh | u(r; K)u(r; K+h)dr+0(h%) = 0,
o

or,

0

§ u(r; Kyu(r; K+h)dr+0(h) = 0.

0o

As the integral is uniformly convergent and u(r; K+#4) is uniformly continuous with
respect to r and /;, hence [3],

8

0= Lt §u(r; Kyu(r; K+h)dr = | Lt u(r; Kyu(r; K+Hh)dr
h=0

h-0 0 0

§ [u(r; K)]* dr = 0,

0
which is impossible. Hence-there does not exist a number M such that |u'(r; K)| < M
for all » - 0 when K2 e G. This establishes the Lemma.

Lemma 3

If u}(r; K) is unbounded as r — 0, where u,(0; K) = 0, then u,(0; K) = O where u,
is any other linearly independent solution of (1).

We consider two cases:
Case 1. u,(r; K) has an infinite number of zeroes in (0, &) for every ¢ > 0. (This happens

I(7+1
only if I:Kz— (t ) —U(r)]> 1/(4r?) as r — 0.) Then u,(r; K) also has an infinite
r

number of zeroes in (0, ¢). For, as is well known, between two successive zeroes of u,
there lies at least one zero of u,. We observe that because u; becomes unbounded as
r — 0 so does u}. For, let |u3| < M. Then the Wronskian u,u5—u,u’y = uu’, wherever
u, = 0 and as such — 0 as r — 0 because u,(r; K) — 0, which is impossible. Next we observe

I(+1
that at a zero of u,, r, say, |u,| has a local maximum, for u;, = [U(r);k ( 3 ) —KZ—I U,
r

has opposite signs to the left and right of r, and as such u is increasing on one side of r,
and decreasing on the other side. Further, we observe that where u; = 0 and therefore
lu}| is large, u, is small so that if u, does not — 0 as r — 0, then the successive zeroes
of u, tend to those of u,. In fact, using the Mean Value Theorem in the interval between
successive zeroes, r, and r, of u,, we can deduce the stronger result that |#/(r,—r;)| = 0
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as (r,—r;) —» 0 where r,+# is the intermediate zero of u,. Now, the Wronskian of u,
and u,, u,u,—u,u) = a constant # 0. Hence whenever u, = 0, corresponding to a local
maximum of |u,|, |u}| < M, where M is a fixed number.

Let us consider a solution of (1), w; = u;, + 4;u, where A, is chosen -such that
wi(r;) = 0, r; being a point where u5(r;) = 0. Remembering that », — O but u, does not,
as r — 0, we have, as r; = 0, 4; - 0. Moreover, |wi(r;)| = |u\(r)] < M as seen above.
That is, as r — 0, w,(r) — u where u(r) is a solution such that |¢/(+)] is bounded wherever
it has a local maximum and hence everywhere. This is not possible. Hence, both «, and
u, » 0 as r— 0.

Case II. u; and therefore u, does not have any zero in 0 < r < ¢, & suitably small.
Remembering that ) is unbounded as r— 0, this is possible only when

(1+1)
r2
uy = [U(r)-}— D

Ty
for 0 < r < e As such ) is monotone decreasing and being unbounded, u; - oo as
r ~ 0 remembering that »} must be > 0 as r — 0. Otherwise u, cannot — 0. As u, +> 0,
lu3| must be unbounded as r — 0. For, if |u,} < M, then whu, -0 as r— 0 and
the Wronskian |u,4)~u,u}| = 00 as r — 0 which is impossible. So |uy] > o as
st = [ty 120
F

Moreover, if we choose u, > 0 then we must have u), > 0 for small . If u, < 0, then
uuy < 0 so that o = U uy—u,uy — —oo because wu,u} - +o0 as r— 0, which is
impossible.

Now, as w5 > 0, u, is a monotone increasing function and as such u, cannot — co
as r — 0. That is, u, — a constant > 0. So, (4;/u,) = —ojui — a constant # 0, as r — 0.
This implies that ¥; — a constant as u, — a constant # 0. This is impossible. Hence
u, - 0 as r — 0 in this case also.

We have proved in Lemma 2 that if a continuum of bound states exists then u} is
unbounded as r — 0. In Lemma 3 we have shown that if «} is unbounded then u, — 0
as r - 0. Combining both of these results we have: If a continuum of bound states exists
then u; and u, both - 0 as r — 0.

We now show that if #,(0; K) = 0 = u,(0; K) where u, and u, are any two linearly
independent solutions of (1), then a continuum of bound states exists for K2 e D. If, for
all such K2, either of u,(r; K) and u,(r; K) » 0 as r —» o, then a continuum of bound
states exists. Otherwise, let us take, without loss of generality, u,(r; K) and u,(r; K) both
— 400 as r = oo, for some K2. Also u,(r; K)u,(r; K)—u'(r; K)u,(r; K) = o, where « is

a positive constant, suppose. So (u,/u,) = aju?. As u;(r; K) exp (—ar) - oo, when r — 0,
ra .
where a > 0, so, integrating, we have 0 < [u,/u,]> = o j dr/u* < e, where ¢ is arbitrarily

0< [KZ— - U(r)} < 1/(4r2).> Suppose u, +0 as r— 0. We observe that

—KZ] u; < 0 if we take, without loss of generality, u, to be > 0

—Kz] u, is < 0 only or > 0 only and as such #) is also monotone.

ri

small, for r; and r, > a suitably large R. That is, as r — o0, (u,/u;) — B, a constant > 0,
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because, similarly, (u,/u.) — a constant and so f§ # 0. Now the solution of (1), u = u,
—fBu, — 0 as r — 0. Moreover, u(0; K) = 0. So u(r; K) describes a bound state. Thus if
1(0; K) = 0 = u,(0; K), for all K? there exists a bound state solution. Hence the required
result in the first form.

Now if both u, (r; K) and u,(r; K) vanish at r = 0, then we can see that ) and u}
are unbounded when r — 0. Firstly, let |4}| < M and |u,] < M when r — 0. Then, the
Wronskian (uhu, —uju,] < M lu; +u,| - 0 as r - 0, which is impossible. So, at least
one of u; and u’, must be unbounded as r — 0. Suppose u, is unbounded. Then, we have
seen that in the Case I where u, and u, have an infinite number of zeroes in any neigh-
bourhood, 0 < r < ¢, of 0, ), also is unbounded.

Suppose u, and u, have no zeroes in 0 < r < g, corresponding to Case II above.
As before, we take u; > 0 and u, > 0 for 0 < r < &. We have seen that u}; — +o0, as
r -0, and w5 is monotonic. Let |u3] < M. So Lt (u5/u}) = 0 = Lt (u,/u,) by L’'Hos-

r-0 r—0

pital’s rule. Moreover as u,u,—u,u;y = o, a constant, (u,/u;)’ = afu; and so preserves
the same sign. As (u,/u,) > 0 for sufficiently small » > 0, and remembering that u,/u; — 0
as r = 0, we bave (up/u;) = oju’ > 0. Otherwise wu,/u; cannot —» 0 as r — 0. That is
« > 0. Then, as wu,u, -0 as r— 0, because |u)l < M, we have o = u u,—uyu
— —uuy < 0 as r - 0, because &} > 0 and u, > 0. This is impossible. That is, we have
proved that if u,(0; K) = 0 and ) is unbounded as r — 0, then u} is also unbounded
where u, is any linearly independent solution for which u,(0; K) = 0.

Finally, if a continuum of bound states exists, then from Lemma [ as r — 0, #'(r; K)
is unbounded where u(r; K) describes the bound state solution so that u(0; K) = 0. So,
u' is also unbounded where u, is any solution of (1) for which u,(0; K) = 0.

Conversely, if 4,(0; K) = 0 and u is, as ¥ — 0, unbounded, where u, is any solution
of (1), then we showed that u,(0; K) = 0, u, being any other linearly dependent solution.
From here it follows, as shown above, that a continuum of bound states exists. Hence
the result in the second form. For potentials U(r) such that —U(r) > i/r* as r -0,
A > I({+1) and for singular attractive potentials, that is, for which {r"U(r); — oo for
some n > 2, as r — 0, both the linearly independent solutions of (1), u, and u, vanish
at » = 0 and, as is known, a continuum of bound states exists for all K* < 0 [4]. But if
r"U(r) — 0 as r — 0 for some n < 2 it can be shown that one of the two solutions of (1)
does not vanish at r = 0. Thus a continuum of bound states cannot exist in this case.

The author is grateful to Professor P. K. Ghosh, Head of the Department of
Applied Mathematics, Calcutta University, for guidance in the preparation of this paper.
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