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ANALYSIS OF BACKWARD PROTON-*He AND -‘He ELASTIC
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Recent experimental data on the backward scattering of protons on *He and “He
are analysed using the deuteron and triton exchange models. The absorption effects, which
are included in the eikonal approximation, can change the cross section calculated in the
plane wave Born approximation by one or two orders of magnitude. The theoretical predic-
tions are compared with recent experimental data.

1. Introduction

New experimental data on the backward proton-“He [1] and proton-3He [2] elastic
scattering have been recently obtained at Saclay. The *He data at 298, 438 and 648 MeV
have been analysed in the framework of the triton exchange model [3]. It has been shown
that the exchange amplitude is very sensitive to the high momentum components of the
exchanged particle wave function. The absorption effects, which are due to the proton-
-proton or proton-triton interactions in addition to the triton exchange, influence very
much the differential cross section changing its magnitude and the shape. In the present
paper we analyse the “He data at 6.0 GeV/c a-particle momentum which corresponds to
840 MeV incoming proton kinetic energy and the p-3He data at 415, 600 and 800 MeV.
For the description of the *He data we use the deuteron exchange model including the
absorption effects. Since this model is very similar to the triton exchange model described
in Ref. [3], in Section 2 we repeat only the main formulae for the p-3He exchange amplitude.
Section 3 contains the numerical results for the p-3He differential cross sections and
Section 4 gives the results for the proton scattering on the He target. Conclusions are
given in Section 5.

2. Derivation of the exchange amplitude for the p->He scattering

The exchange process of the elastic p->He scattering is schematically illustrated in
Fig. 1. By d we denote the proton-neutron pair which forms the initial 3He nucleus together
with the proton p; and remains in the final 3He nucleus with the incoming proton p.
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This pair we shall call deuteron although in general it may have the spin-isospin quantum
numbers different from the deuteron ones. The diagram corresponding to this mechanism
is shown in Fig. 2a. This is so-called plane wave Born approximation of the exchange
amplitude which in the general case contains the initial and final state interactions repre-

Fig. 1. Exchange process of elastic p-*He scattering
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Fig. 2. a) Deuteron exchange diagram, b) deuteron exchange diagram including absorption

sented as the shaded area in Fig. 2b. The exchange amplitude is given by the formula [4]:
T =K Voaly™, 2.1

where ¥, , is the proton p,-d interaction, y* is the wave function describing the entire
scattering process

N 1
5T Eyin—H

+

po o= Vi 2.2)
and ¢~ describes the scattering of two protons p and p,,

n— +0. (2.3)
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421

In Eqs (2.2) and (2.3) H is the total Hamiltonian, E is the total energy, V is the initial
channel interaction

Vo= Vot Voa (2.4)

and V,,, is the interaction of the protons p and p;. The initial wave function y; is

=3 K, [ \SPiRy BT T
= (2n) "™ ru, (sp)e e (ry, o, 13), (2.5)
where k;, r, and s, are the momentum, space and spin coordinates of the initial proton
while u, (s,) is its spin wave function with spin projection v;; P;, R; and &; are the
3He-nucleus momentum, position coordinates and spin projection. The internal 3He wave

function ¢. depends only on two coordinate vectors because the following condition
is satisfied

i’ii = —;— (;1 + ;2 +;3), (2:6)

where 7, and 7, are the coordinates of two protons and r is the neutron coordinate. The
final wave function is given by the formula:

= (2n) 2™, (5,))eT QR T2, T3), 2.7

where k} is the final proton momentum, v; — its spin projection and 1'3f and & — the final
3He momentum and spin projection. The coordinate R; is equal to

Re = L (ry+72+75). (28)
The wave functions ¢} and ¢} are translationally invariant. The normalization of the

amplitude is such that the contribution of the exchange amplitude to the differential cross
section in the ¢. m. system for an unpolarized proton beam and unpolarized 3He target is

do 4 p~h
7 “'( ) (E +Eh) Z !2 v,s,v,t, s (29)

where E, and E, are the proton and *He-particle c. m. energies and the amplitude T, eveer
multiplied by the Dirac delta function 5(1}’;-1—@—-1-(}—5;) gives the amplitude 7
(Eq. (2.1)). The factor 2 before T in Eq. (2.9) means that there are two possible exchanges
of the incident proton with two protons of *He nucleus.

Now we shall make a set of assumptions needed in the calculation of the exchange
amplitude. The wave functions ¢~ and y* are written in the eikonal approximation:

i
¢ * = yF exp[— " j pl,l(b +kz rl)dz] (2.10)

pt = exp [— L J V(by+kz, 7y, Py F;,)dz] Xi» (2.11)
v
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where the z-axis is chosen along a vector k= (I—c'i—l}‘f)/ll'c'i —jc}l, so b, is the perpendicular
component of the vector Fp, kz — its longitudinal component and v is the relative p-*He
velocity in the c.m. system. Next we introduce some relative vectors (see Fig. 3):

Yo = F3—ra, (2.12)
Y =rFi—Fq (2.13)
6 =Fy—Ta (2.14)
where

re = 3 (Fy+73). (2.15)

—

ko

-

9

Fig. 3. Relative coordinates in 3He

We assume that the mtcractlons s Vops de and ¥V, are the functions which depend only
on the relative coordinates o—y, y and p and are independent on spins. Therefore it is

very convenient to take the *He wave function in the factorized form

GE(F1, 72 73) = X(0) * A (F), (2.16)

where the function y(y) describes the s-state relative motion of the n-p pair with respect
to the proton p, and ‘4,(y,) describes the internal motion of the n-p pair and contains
the spin coupling of the three nucleons. The final *He wave function is

PhFor T2 73) = 2(0)2e(V1)- (2.17)

There is a large probability that the p-n pair forms the deuteron which has isospin 0 and
spin 1. As in Ref. [5] we assume that this probability is unity, so for 4, we adopt the
following spin coupling:

2'51 = z <% VlO'l % £i>w:(3;l)uv(sl)s (218)



423

where 5 d(3,) denotes the deuteron wave function and u,(s,) is the proton p, spinor,
o and v are the deuteron and proton spin projections. For 4, we can write the expression
similar to Eq. (2.18) replacing s; by s, and ¢; by &;.

The relative motion wave function y{y) satisfies the Schrddinger equation

V2
[‘ —2— + Va0 ]x(y) = gx(y), (2.19)
u

where p is the proton-deuteron reduced mass and
& = g,—&g = —5.49 MeV (2.20)

is the proton separation energy in *He (g, and ¢4 are He and deuteron binding energies).
Using the above assumption we get the amplitude

T,

viEgveee tv,s,vfe,

T.. (2.21)
with the numerical factor

fyemer = U3(51) § Y1450 DAy D, (s,) (2.22)
and the amplitude
2

e L v .
T, = (@2n)~° Jd3yd39 exp (iQ,0+i0y)x*(0) (83+ 33) 1Wf(e, y)- (2.23)

In Eq. (2.23) the two vectors are introduced

—-

g, = ki—1 px, (2.24)

-

0=1n—k (2.25)
and f(E, y) is the absorption factor

@

f(é’ ;) = CXp [:— % j‘ ppz(QJ_ . | ’ ‘)dz'" - f d(O_j_a Z)dz:l (226)

— 0

Here E . and y | are the perpendicular components of vectors Q and y and 0, is the parallel
component of ¢ with respect to the z-axis taken along k;—k;.
The cross section (2.9) corresponding to the amplitude (2.21) is

do EE, \
0= $0ent (E E.J T2 (2.27)

where the factor 4/3 comes from the summation over the spin projections

% Z 121“’181"15112 = % (228)
Vi8(VeEy
In the calculation of Eq. (2.28) we used the orthonormality relations for the proton spinors
and the deuteron wave functions. The internal deuteron structure may be arbitrary in this
calculation.
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When the absorption factor is equal to 1, we obtain the Born amplitude in the c.m.
system

2
TX(Q) = @20 (es— —%) H*Q), 2.29)
where H(Q) is the Fourier transform of x(r)
H(Q) = [ d*re@y(r) (2.30)

and we have assumed that x(r) is the real function. The parametrization of the function x(r)
is the following (Ref. [S]):

1
x(r) =N = exp (—ar) [1—exp (— )] (2.31)

In this equation N is the normalization constant,

o =~/ —2pe, = 0.420 fm ™"
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Fig. 4. The 3He charge form factor. Data are from Ref. [6]

and f and » are real parameters fitting the electromagnetic *He form factor which is pro-
portional to the body form factor:

F(g) = | dre¥ Fy(r)2. (2.32)
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In Fig. 4 we see that a good fit to experiment [6] is obtained for § = 1.80 fm~! and
n = 4. In this fit the proton and neutron electromagnetic form factors are taken from
- Ref. [7]. In Fig. 5 the function [H(k)| is plotted. It has a zero at k? ~ 4 fm~2.

In order to specify the form of the absorption factor (2.26) we express the part of f
containing the proton-proton interaction by the profile function

oo

. - i . -
Yoplo, —¥,) = 1—exp [-- - J. Vepilo =¥ > z)dz] . (2.33)
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Fig. 5. Proton-deuteron relative motion wave function in momentum representation (Eqs (2.30)-(2.31))

which is related to the proton-proton elastic scattering amplitude

ik e
fpp(Q) = %‘ J‘dzbeu!bypp(b) (2.39)

4
parametrized as the Gaussian function of momentum transfer g

i+a o k -2 ,
Jor(@ =(_7:7)"Le 2, (2.35)
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The parameters of this effective amplitude are: the total proton-proton cross section g,
the ratio a, of the real to the imaginary part of the forward scattering amplitude and
the slope parameter a,.

The proton-deuteron interaction is parametrized in the following form

1 . B _,;.
— Vos(r) = Ree(i4+ay)2 [—e™ ™ (2.36)
v 7

where Reeg, o; and f§ are real constants to be fitted from experiment.

The above equation completes the set of the functions needed in the calculation of
the exchange amplitude (2.23).

3. Numerical results for p->He scattering

The differential cross sections have been calculated numerically using Egs (2.23)
and (2.27). Some integrations have been done analytically as described in the appendix
of Ref. [3]. The results are shown in Fig. 6 and the parameters used are given in Table 1.
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Fig. 6. Proton-3He elastic scattering at 415, 600 and 800 MeV. Data are from Ref. [2]. Parameters are
given in Table 1

A rather good agreement with experimental data at 415 MeV is obtained while at 600 MeV
and 800 MeV the theoretical curves lie too low. The remarkable fact is that the 415 and
600 MeV angular distributions are experimentally almost identical. This is impossible
to achieve in the Born approximation but the absorption effects are so strong that it
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TABLE 1
Parameters used in the calculations of the p-®He cross sections
Energy Op ap B
MeV mb %p GeV-2 Re ¢ %4 fm-2
325 24.0 0.70 0.4 —0.23 0.35 0.45
415 26.5 0.61 0.4 —-0.25 0.30 0.45
600 37.0 0.48 3.0 -0.30 0.15 0.45
800 47.5 0.27 5.0 -0.34 —0.09 0.45

can change substantially the Born cross sections as it is shown in Fig. 7. Although the
angular distributions in the Born approximation are quite different, the absorption correc-
tions make the two cross sections very close at 325 and 415 MeV. Let us notice that at these
energies the absorption corrections are positive while at higher energies like at 600 or 800
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Fig. 7. Comparison of the p->He differential cross sections at 325 and 415 MeV. The dashed lines are
calculated in the Born approximation, the solid curves present the absorption effects. The experimental
points are from Ref. [2] at 415 MeV

800 MeV they are negative (Figs 8, 9). At 600 MeV the cross section in the Born approxi-
mation is larger than the experimental one but when the absorption effects are included
the theoretical cross section is considerably smaller than the the experimental one. In the
same figure the dependence on the ratio «, is shown and the upper curve corresponds
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Fig. 8. Proton-*He elastic scattering at 600 MeV. Data are from Ref. [2], the crossed point is from Ref. [20].
The theoretical curves are calculated for two different values of ratio e, of the p-p forward amplitude
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Fig. 9. Proton-*He elastic scattering at 800 MeV. Data are from Ref. [2]. The theoretical curves correspond
to two different values of parameter «,
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rather to the maximum value of «, compatible with the experimental pp data [8, 9] or
the dispersion relations calculations [10, 11]. The total cross section o, and the slope a,
are also taken from experiments (Refs [12-14]). The parameters of the pd interaction
have been obtained by a comparison of the total pd cross sections and the small angle
differential cross sections with the experimental values of Refs [12, 13, 15-19]. The
theoretical pd amplitude has been calculated in the eikonal approximation. At 800 MeV
the cross section in the Born approximation is larger then the experimental one by a factor
ten but when the absorption effects are added it is even smaller than the experimental one.
We observe that the role of absorption increases with increasing energy and that some
disagreement in the absolute magnitude of the angular distributions remains at 600 MeV.
The general shape of the differential cross sections is, however, reproduced.

One may list many effects which can contribute to the p-*He scattering amplitude
in addition to the deuteron exchange. The first possibility is that the exchanged n-p pair
is not in 1009 in the S = 1, isospin O state. In fact the *He structure is more complicated
and the full *He wave function contains S, S’ and D components [21]. The orbital parts
of these wave functions are not well known especially at high momentum transfers and
many calculations using the “realistic’” *He wave functions underestimate the *He charge
form factor at the secondary maximum [22]. Therefore we have used the simple form (2.31)
which has the correct asymptotic behaviour at large p-d distances and fits the electro-
magnetic *He form factor. Let us remark here that in order to calculate the contributions to
the cross section coming from the other possible states of the exchanged n-p pair, we have
to use the different spin factors and different absorption factors (Eq. (2.26)). For example,
if we neglect the absorption effects and use the completely antisymmetrized wave function
in the spin and isospin coordinates of three *He nucleons (being in the relative S-state
orbital motion), then the factor % in Eq. (2.28) becomes unity. In this case the probability
of the n-p pair in the 35, isospin O state is equal to 4 and the same is the probability of
the 1S, isospin 1 state. The interaction of the n-p pair in the S, state (which is not a bound
state) with the proton is, however, more difficult to calculate than the deuteron-proton
interaction which experimentally is much better known.

The second possibility of explaining the behaviour of the p-*He cross section in the
400—800 MeV energy range is an exchange of a pion in addition to the two-nucleon pair.
This possibility has been mentioned in Ref. [2] but already in Ref. [23] the cross section
at 180° has been calculated using the one pion exchange model and the cross section for
the pd — =t reaction. Unfortunately the calculated cross section has been considerably
smaller than the experimental result and paradoxically deuteron-exchange contribution
has been indicated as a possible source of this discrepancy. It seems to us, however,
that some assumptions of Ref. [23] should be reexamined once again before the final
conclusion about an inapplicability of the two-nucleon plus one pion exchange model
can be drawn.

We would like to mention briefly some other contributions to the calculated cross
section. It is known that the nucleon-nucleon amplitudes depend on spins and vary
much with energy. Since the *He nucleus has spin 3 we may expect that the spin amplitudes
may be important. In the present paper we use only the effective spin-independent pp or
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pd interactions in order to simplify the calculations. Moreover the direct amplitude which
dominates the forward scattering has been neglected. It is now extremely difficult to
calculate it accurately because we do not know the high momentum components of the
3He wave function which are more important for the direct amplitude than for the exchange
one. One may expect that in this case the relativistic corrections to the scattering amplitudes
are important. We should mention also the eventual presence of the off-shell effects which
are very difficult to estimate.

4. p-*He backward scattering

In Ref. [3] we have discussed the p-*He data [1] at 298, 438 and 648 MeV incoming
proton energy. Here we add our results for the differential cross section at 840 MeV or
6.0 GeV/c incoming «-particle momentum. They are presented in Fig. 10. At 840 MeV
we observe a rather steep peak in the backward direction. Comparing the absolute magni-
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Fig. 10. Proton-*He elastic scattering at 298, 438, 648 and 840 MeV. Data are from Ref. [1]. Parameters
at 840 MeV are: g, = 48 mb, a, = 0.05, g, = 4 GeV~%, Ree = ~0.52, o, = —0.07, B = 0.52 fm™?, at
lower energies — see Ref. [3]
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tudes we notice that the cross section falls down quickly with the proton energy. The
general features of the angular distributions are rather well described by the triton exchange
model with the absorptive corrections perhaps except for the smallest energy. One should
note that the momentum transfers at 300 MeV are close to the position of the zero of the
proton-triton wave function and therefore the cross sections in this energy range are
sensitive to different corrections which are needed in the present model. Especially at
small energies the eikonal approximation may break down as well as the simple parametri-
zation of the pp and pt scattering amplitudes.

5. Conclusions

The deuteron and triton-exchange models explain many features of the backward
proton-*He or proton-*He elastic scattering differential cross sections. The cross sections
calculated in the Born approximation are substantially changed by the absorption effects
in the initial and final channels. These effects are calculated in the eikonal approximation.
The general agreement is better for the p-*He case where the absorption effects produce
the steep peaks in the backward direction. For the p-*He case the approximate equality
of the 415 and 600 MeV differential cross sections is not reproduced by the model although
the shape and the order of magnitude of the cross sections are well predicted. The possible
reasons for this discrepancy are discussed in Section 3. It would be desirable to measure
the proton-triton backward scattering cross.section in order to test the predictions of
the exchange model. For the proton-triton elastic scattering only the 7 = 1 two-neutron
exchange contributes while for the p-*He case / = 0 and / = 1 exchanges are allowed.
In addition the data on *He and *He electromagnetic form factors at higher momentum
transfers would help us to understand better the internal structure of these nuclei.
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