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ON TWO NUCLEON SOLITARY WAVE EXCHANGE POTENTIALS
By M. SeHATU* AND P. B. BURT
Department of Physics and Astronomy, Clemson University**
(Received October 18, 1977)

Using a polynomial interaction solitary wave propagator for spinless, self interacting
mesons, a two nucleon potential is constructed in analogy with OBEP and previous solitary
wave exchange potentials (SWEP). Since the solitary wave propagator automatically includes
higher mass contributions, generalizations of OBEP are obtained without the introduction
of new, arbitrary mass meson exchange. As with previous SWEP, the polynomial SWEP
discussed in this paper compare favourably with phenomenological potentials but require
only a few undetermined parameters.

1. Introduction

It is well known that phenomenological [1-3] and one-boson exchange potentials
[3, 4] exist which can successfully account for N-N data up to 350 MeV. The phenomeno-
logical potentials, by their very nature, contain a large number of parameters (about 30).
The OBEP have a linear field theoretical basis. Nevertheless, they regard, in most cases,
masses and coupling constants of exchanged mesons as adjustable parameters and require
one or more fictitious ¢ mesons to provide attraction at intermediate ranges. Recently
[5, 6], there is a tendency to replace the ¢ meson contributions by multi-pion (or at least
two pion) exchange mechanisms. Although this may be regarded as a step closer to the
development of a “first principles” explanation of low energy nucleon-nucleon scatter-
ing, the OBEP remain at best semi-phenomenological.

The most well established part of the OBEP is the long range region which comes
from one-pion exchange. Even the popular idea that vector mesons are solely responsible
for the strong short range repulsion is being questioned [7]. The success of OBEP and
phenomenological potentials in fitting N-N data does not, therefore, rule out other ap-
proaches based on new results in field theory. As examples of possible approaches, we have
recently considered the derivation of N-N potentials from solitary wave theories of non-
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linear meson fields like the A@* theory and sine Gordon theory [8, 10]. These potentials
are referred to as solitary wave exchange N-N potentials (SWEP).

The SWEP are obtained by employing a solitary wave propagator in lieu of
the conventional linear meson field theory propagator in the usual second order per-
turbation theory derivation of OPEP. The SWEP, for example the Ad* [8] and sine
Gordon SWEP [10], exhibit characteristic features of successful OBEP [4] and phenomeno-
logical potentials. That is, they possess the established OPEP tail at long range (mr = 1.5),
can be made attractive as desired by adjusting the self interaction coupling constant(s)
at intermediate ranges (0.5 << m_» < 1.5) and at short range (m,r << 0.5) become repulsive
smoothly. These reasonable features are achieved without involving an undue number of
parameters. The A¢* and sine Gordon SWEP involve, for instance, only one parameter in
addition to those associated with the standard OPEP. Physically this is accomplished
because the quantized solitary waves contain *“‘coherent operators” which have the property
that the system being described is a many particle system with a mass spectrum dependent
only upon the mass entering the linear theory and the type of nonlinear self interaction
[11]. Thus, the potential obtained from the solitary wave propagator automatically has
contributions from higher mass states, modifying the long range tail without the introduc-
tion of new parameters.

Encouraged by the 1@* and sine Gordon SWEP results, we consider in this paper the
derivation of a more general solitary wave exchange potential (polynomial SWEP) from
the polynomial solitary wave field theory recently discussed by Burt [11].

The outline of this paper is as follows. In Section 2 a brief review of the quantized
solitary wave theory used in this paper is given. In Section 3, expressions for the polyno-
mial SWEP are obtained by relying on details of the derivation of the id* SWEP. In Sec-
tion 4 several special cases are discussed. The conclusions are given in Section 5 while
some details are included in the Appendix.

2. Review of the quantized solitary wave theory

The solitary wave theory to be used in this paper is based on the nonlinear field equa-
tion

0,0"P+m>*®+ 1,04+ 1,0%* ! = 0,
8,0" = 8} -V*, h=c=1, @.n

where 1; and 4, are self interaction coupling constants and s is the mass of the associated
linear fields. It is easy to see that for A, = A, = 0 Eq. (2.1) is the Klein Gordon equation
while for 1, = 0, ¢ = 1 or 4; =0, g = } the equation is that of the 1d* theory.

A pair of exact, particular solutions (solitary wave solutions) obtained either by direct
integration [11, 12] or by the method of base equations [13] are

Oy = g P~ 2,98 4(g + Dm?) = A,V [A2q + )m*] 1,

qg#0, —%, —L (2.2)
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The ¢}* in the solutions Eq. (2.2) are positive and negative frequency solutions of the

Klein Gordon equation (the base equation). For the purposes of this paper we define
them to be the plane wave solutions

(},yi‘%ﬂ:) - A;{:‘r)e';:ikx/((akl;)l/z,
k-x = koxg-—k-x., o = (k2+mHY2, 2.3)

The 4§* in Eq. (2.3) are the creation and annihilation operators of the linear ficld theory
and satsfy the commutation relations

AL AT = Opn - (2.4)

where in a box of volume V
ko= 208 P(ngé 4 naéy +niéy) = 2nb T i, (2.5)

The momentum space solitary wave propagator constructed from the solitary wave fields
is [11]
FQqn+2)I'2qn+1)*""2 [C,4¢ Tapn
Pk, M) = gl (1«—;7) [ ——A( ")] [%‘?._‘_, ] . (2.6}
- [;;1,,,,4 kK [K?— m,],,+h,]

nTA)

where CY Z“(/:",) are Gegenbauer polynomials [14], I'(¢) are the usual gamma functions

mg, = (2qn+1m. (2.6a)
&, = A8l g+ Hym?, (2.6b)
and
Cy = ‘i “2 v (2.6¢)
A 16(g+1)*m*  4Qq+NHm?*| -

Detailed properties of the solitary wave propagator are discussed elsewhere {11]. One of
the important characteristics for this paper is that the propagator has poles in k* at
b, = (2gn+ 1) m independent of the coupling constants i, and Z,. The strength of the
residues at the poles depend on the coupling constants through the Gegenbauer polyno-
mials and the factor {,. In configuration space contributions from the poles (mass states)
to potentials appear as superpositions of Yukawa and exponential terms with strengths
that depend upon the coupling constants.

In other applications, the solitary wave propagator, Eq. (2.6), has been used in ob-
taining a mass formula for a sequence of spinless mesons [15] and has been used to predict
oscillatory cross section for elastic baryon-antibaryon scattering [16].

3

3o The N-N polynopial solitary ware exchange potential

To obtain a SWEP we follow the standard OPEP derivation (see, for example [17)).
Whenever a propagator is needed, however, we substitute a solitary wave propagator
instead of the conventional linear ficld theory propagator. We have used this procedure
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earlier to obtain SWEP for the A¢* theory and the sine Gordon theory [8, 10]. The results
of this paper are obtained by using the propagator in Eq. (2.6). This generalizes the 19*
theory and the sine Gordon theory and leads to a more general SWEP.

Following the above procedure, as for the 1¢* SWEP [8], we write the non-rela-
tivistic limit of the direct part of the lowest order solitary wave exchange N--N interaction
amplitude

Myn = (, \1) (z, 1) (6, k) (o, k)

A

I“(2qn+2)(2qn+l)“’r"m2 l,q n
N S A 7

n=0
[C,f'z“(i,,)]z} , (3.1)

where 7 and ¢ are the usual isospin and spin Pauli matrices, g the n-N coupling constant,
M the nucleon mass and & the exchanged three-momentum (the notation has been changed
from that in [8] to conform with that in [5]).

In the N- N amplitude, Eqg. (3.1), we deliberately neglected the exchange contribution.
This is allowed without any loss of generality provided care is taken to insure that the
N-N state in guestion is explicitly antisymmetric. This is done by choosing the sum of
the total spin (S), the total isospin (7} and the total orbital angular momentum (L) of the
two nucleons to be odd.

As it stands, Eq. (3.1) may be referred to as the momentum space polynomial SWEP.
Momentum space potentials are useful for N-N calculations in, for example, the Lippman-
-Schwinger equation [5]. However, the gualitative features of the SWEP which we wish
to consider are more transparent and familiar in configuration space. Therefore, we
Fourier transform the non relativistic amplitude, Eq. (3.1) and obtain the polynomial
SWEP as a function of position. One has

I’"’“EP’(i)-— I ( ) [e, V][o, V][, 1,]

(2r)?

o

2n
Z{F(2C}n+2)(2¢1n+ 12 {;ﬂ [C (&)
[4]

n=

o

[exp(ik )’k }

W 32
[k%+ mfn o) -2

Evaluating the integral (see Appendix), for gn integrul, Eq. (3.2) leads to

b (sww)( Y = - (7 VI) [, -V][e, V][r, 1,]
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20

—)" +D!Q2gn+ D)2, P ‘
Z{( : Qq’(qflm )g“'?rl ) '[fxqi] [C.2%ENT

qn
n=0

“y(~2qn~1) -2
[~ 2mg )+ 2L 200 2m 1)

exp (— mq,,r)}

qn ~
r

m

(3.3)

where L. are Laguerre functions [20]. The polynomial SWEP has the same delta function
singularity at the origin as the Ad* SWEP or OPEP. For n = 0 or 4, = i, = 0, Eq. (3.3)
reduces to the standard OPEP, as is the case for 1@+, SWEP or sine Gordon SWEP. As
expected from the field theories, the Ad* SWEP isthe 1, =0, ¢ = 1o0or 4, =0, ¢ = 1/2
case of the polynomial SWEP constructed in Eq. (3.3). This and other special cases are
more transparent after the potential is split into central and tensor terms ! yielding

(o) = g2 /m\Vm \
mel) = o\ag) 3T

a0

2n
Z {( " 2gn+ 1)! [(55:‘7)]] [Ci/z"(‘fq)]z

n=0
(a, 0, [ L2 M (2my, ) + 6L, 24 (2m )

+ 2L 25 V2m ey + 8L, 20 P 2m ) ]

y ._3‘,,4 3, (—2qn—1)n .
+‘SIZ 1 + + 2 Lqu (“'"qn’)
myr  (My,r)

2 300N a0 .
+6< | i ) }qn:"{”(2rn4nr)
! Mg (Mg,

aqn

1
+12 (l o ) P R ST
gt

i EXp(—w
+8L, 24 2’(2;;1,,,,;-)]) exp (M)
mr

mr # 0, gn integral. (3.4)

! {n performing the steps leading to this recombination the following identities are helpful

1

( N 5( d? i 2 d ¢ d? 1 d 1
. - z e A (G, O S T s
a; " V){e2-V 3 l 1 2) e C ) Y2 e v dr ‘ f

Sy = 3oy ;)(0'3 '7’)“0’1 c Oz,

d” (2, n, (x+n)

L) = D
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In Eq. (3.4) the coefficient of S,, is, as usual [8], the tensor term while the coefficient
of &, - 6, is the central SWEP. Special cases of Eq. (3.4) will be discussed in the next
section. However, it is evident from inspection of the general SWEP that it contains Yukawa
and expenential contributions whose relative strengths depend upon the coupling constants

through the terms in {, and the Gegenbauer polynomials.

4. Special cases of the polynomial SWEP

Although the parameters in the polynomial SWEP must be determined by comparison
with experiment, it seems worthwhile to explore some special cases obtained by making
arbitrary choices for these parameters. The confrontation with experiment will be left
to future studies.

As a first example, consider the case when g = 1. The Gegenbauer polynomials
reduce to Legendre polynomials [14] and the Laguerre functions simplify to Laguerrc
polynomials [14]. This results in more familiar and relatively simpler expressions for the
polynomial SWEP. Using standard definitions of the Legendre and generalized Laguerre
polynomials, the four leading terms of the (4, &*+7,0°% SWEP are

. o2 fm\’m / 3 3N e ™
POWER vy = 2 =) =z, -t {l o, 0,4 S 14— —;—) -
4 \2M/ 3 (% Lo x X/ )ox

~3x

+32%a, - 63—+ §,,(3v 4+ D]
X
+ 74:5 (212 +}’)2[61 ' (}'2(‘5,\" - 3) +SJZ(5-\')]("“ Sy

+735 20 4 ap) [0, - 6,(49%7 — 21x ~3) + S, 5(49xH)]e T } . {x = mr) 4.0

where
Ay
- o (4.1a)
and
Ay
R ]“2;;_;‘4}' (4.1b)

Clearly, Eq. (4.1) reduces to the A®* SWEP for A, = 0 [8], while for 4, = 0 it becomes
the A@® SWEP (not previously discussed). In either case the leading term is the OPEP.
Furthermore, the second term is not dependent upon 2, and thus, is identical with the
second term of the 2% SWEP. In general. then, the higher mass states, corresponding
to n = | or larger, contribute to the “interior” of the N-N potential. This is what one
expects intuitively from perturbation theory, even though the SWEP is non perturbative
in nature. That is, neither the ficlds nor the resulting propagator for the solitary waves
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can be obtained from a perturbation theory with the solutions of the linear Klein Gordon
equation as a basis [11].

As a second example, consider the N-N system to be in a 1S, state. Since S = L = 0,
the requirement S+L+ 7 = odd integer implies that 7 = 1. For this case the tensor
term vanishes and (e, ‘@, 1, - 7,> = —3. The effective polynomial SWEP in Eq. (3.4)

becomes
2 2 z , 2n
(150~ SWEP) _ g m n {q
Vicinag — (Mgl) = — a7 o) " (=) <{(2qn+1)! Gmry*

[Ca/*ENT [L®™ ™ P(2mg,r) + 6L (qu“{' } 2m 1)+ 1205257 D (2my,r)

exp (— mq,,r)l
mr

+8L, 20 P (2m,,r)] 4.2

Once again, for simplicity, we consider the special case ¢ = 1, so Eq. (4.2) reduces to the
(A, ®*+ 1,8°) SWEP for the 1S, state of the two nucleons. The four leading terms are

i 2 m 2 e e—'3x
Va(,yso—SWFP)(x) 4g <2M) m [7 +3a2(3x-—2) T 7'4'5 (2a2+,},)2
(5x—3)e™ >+ 735 (20 +ay)*(49x* —21x —3)e " *+ .. ] : (4.3)
100
504, 70 oe05
—\=-a5
0

('Sy -SWEP)

V' (x)(Mev)
®y,
8
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Fig. 1. An 1S,-state polynomial (1,5*+ 4,D°%) SWEP (Eq. (4.3)). « = 0.5 for all the curves — except for

the Yukawa potential where & = y = 0. x is in pion-Compton-wavelength. The constant g2/4sz(m/2M)*>m

in taken to be 10.5 MeV. The curves show the effect of the second (4;) nonlinear term with the first (4,)
term fixed
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Again, for 1, = 0 Eq. (4.4) is the 1S, A$* SWEP [8]. For i; = 0 the i$5 SWEP is

2 2 —-x
Veno SVEP(x) = — i(i) m [f;- + 75y (5x—3)e S 4 ] (4.4)

4n \2M X
Thus, we see that the deviations from OPEP due to a A®® interaction contribute only
exponential terms to the 'S, N-N potential. Consequently, these interactions can only
modify the intermediate region of the potential since the argument of the exponential
damps out the contribution relative to the OPEP potential and there is no r=! contribution

100

501 §=2 x=0

-50}-

('s,-sweP)
0y,

Vo (x)(Mev)”

-200}-

1 L 4

- h,ﬁ.__ ! ! | | ]
2505 05 10, 5 20
X

Fig. 2. An 'S,-state 205 SWEP (Eq. (4.4)). ¢ = 0 for all the curves. y = 0 is the usual O. P. E. Yukawa
potential. The curves show the effect of the 4,-term when A, = 0. Notice the Iarge values of ¥ used compared
to those of Fig, 1

as in the OPEP. As is evident from figures 1 and 2, the (4, ®*+ 1,9%) SWEP and the 19°
SWEP closely resemble the A®* and sine Gordon SWEP for the 'S, state. All approach
the OPEP tail at long range (mr = 1.5), they can be made as attractive as desired by
adjusting A, and 2, and at the origin they become repuls'ive.yNote that we have set g = 1
in the figures. There is some indication that the radius of the repulsive core can be adjusted
by varying g. Thus, the polynomial SWEP may not only be meaningfully compared with
N-N scattering data, but may also be useful in interpreting nuclear matter.

5. Conclusions

As generalizations of previou‘s SWEP [8, 10] we have derived polynomial SWEP
based on.the nonlinear field equation, Eq. (2.1) and its solitary wave solutions {11]. These
field theories provide additional flexibility in the SWEP compared with 1@* SWEP and
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sine Gordon SWEP through the dependence of the potentials on the additional coupling
constant and the general exponent of the polynomial nonlinear terms. As expected,
special cases of the polynomial SWEP reduce to the A¢* SWEP. Although it is evident
that the resemblance of the polynomial SWEP to phenomenological potentials is quite
close, it still remains to make a detailed comparison of these theories with experiment. The
SWEP exhibit features similar to the most effective phenomenological potentials (e. g., Reid
soft core potentials [2]) and contain only three parameters. They are capable of adjustments
in strength, especially at intermediate ranges and provide flexibility in the strength and
radius of the core. These features provide motivation for using the polynomial SWEP
in either N-N scattering models or nuclear matter models. This will be left for future
study.

One of us (M. S.) is grateful to the University of West Florida physics faculty (in partic-
ular to Dr J. S. Marsh) for their interest in this work and use of their facilities and to Dr
R. J. Philpott of Florida State University for his discussion.

APPENDIX

We consider in detail the evaluation of the integral in Eq. (3.2)
; exp (ik - r)dk
- [k2+m;"]qn+1 :

o0

(A.)

Integrating over the angle dependence, with the polar axis defined by r, and using the
identity

— eikr — keikr
dr
one has
2n d exp (ikr)
- I Sl AR A2
r dr f [k2+m,f,, an+ 1 4.2
This integral is [18]
R B W s ) (A3)
- = - am—al2mr) |, .
rodr| @my)™ ! M(gn+1) OTUTETE

where W,_, are Whittaker functions [19]. These may be expressed in terms of generalized
Laguerre functions [20]. For gn integral,

WO,—qn-é(zman) = (—)an(qn + 1) (2”141111')—'1'x

exp (— mg, )L 2"~ D(2m,,r). (A.4)
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Using the relation

i
2;7 L5 D2imgr) = —2m gL 20(2m 1) (A.5)

along with Eq. (A.4) in Eq. (A.3), one has finally

. 47? exp (—mg,r)
I = (=) gy ()

(2mg,)
(L 27™ D(2mg,r) + 215,24 2my,r)]. (A.6)

This is the result used in the text.
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