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The paper presents a family of interior solutions of the Einstein-Maxwell field equations
of general relativity for a static, spherically symmetric distribution of charged fluid. The
family of solutions have been matched with the Reissner-Nordstrom metric at the boundary.
The solution of Adler can be obtained from these when charge is absent.

1. Introduction

The Einstein-Maxwell field equations in the presence of matter and charge form
a highly non-linear system of equations. So a small number of exact solutions have been
obtained. Bonnor (1960), Efinger (1965), Kyle and Martin (1967), Krori and Barua (1975)
and Nduka (1976, 1977) have obtained internal solutions for static spherically symmetric
charged fluid spheres under different conditions.

For the charged static spherically symmetric fluid of density g, pressure p and total
charge @, the field equations reduce to three coupled ordinary differential equations
involving these fluid variables and two metric functions. In order to solve this system, it
is necessary to specify in some manner two of the unknowns or to introduce subsidiary
relations between them i.e. specify an equation of state. For example Nduka (1977) has
solved these by taking e™* = constant and a suitable form of total charge Q.

In the present paper we have obtained some exact solutions for the spherically
symmetric charged fluid distribution using an entirely different technique, namely a specific
choice of metric function v(r) and charge Q(r). We have also shown that they may reduce
to Adler’s (1974) case in the absence of charge.
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2. The field equations and their solutions
We use here the spherically symmetric line element
ds? = e'dt* — e*dr® — r*(dO* +sin* Odo?), 2.1)

where 2 and v are functions of r only.
The Einstein~Maxwell equations for the charged perfect fluid distribution in general
relativity are

[(—@)'*F7],; = 4nJi(—g)'"?, (2.3)
Friju = 0, 24

where T; is the energy momentum tensor, J'is the current four vector and Gy = R;—%Rg;;
is the Einstein tensor with R;; as the Ricci tensor and R the scalar of curvature tensor.

For the system under study the energy momentum tensor T} has two parts viz. t}
and E; for matter and charges respectively

T} = i+ E, (2.5)
where

1 = [(o+p)u'u;—3p] (2.6)
with w’u; = 1. The nonvanishing components of ] are
fi=o t=8=1=—p

The electromagnetic energy tensor E; in terms of field tensor Fj; is given by

Ej = —FF*+1 8\F, F*. (2.7
Due to spherical symmetry, the only non-vanishing components of field tensor F”
are F*' = —F'4. It then follows that the nonzero components of Ej are
4 1 2 3 1 412
E4=E1=—E2=—E3=—§7‘[g44g11(F )"

By this choice of field tensor F*/ equation (2.4) is clearly satisfied.
Now we get from equation (2.3)
Qe

F41=* . ,
r

(2.8)

where N = (A+v)/2 and Q(r) represents the total charge within a sphere of radius r,
viz.,

o(r) = 4n j JHr2eNdr. (2.9
0
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From equation (2.9) we see that outside the fluid sphere Q(r) is a constant Q, which is
the total charge. Then from (2.8) one finds the asymptotic form of the electric field as Qo/r2.
Thus the field equations may be written as {Adler et al., 1974),

“ LAt 1
8np+8nE, = e — =1+ =, (2.10)
ror r
. LYy 1 1
np—8nE; =e | -—+ 5|~ =, 2.11)
r r r
Sep—snEl — o [ 4 L A A (2.12)
np—8nE; = ¢ e .
pront 2Ty T T Ty
Eliminating p from (2.11) and (2.12) we get
., ("/)2 1 LYW
vVi4

- — (V)= — + L (2-32nEir?)e* — 2. 0 (2.13)
2 r ) 2 2r° ! r? ' '

In equation (2.13) we can find one of functions v and A if the other is given. For this we
choose v of the form

v = 2logy.

(2.19)
Using equations (2.8) and (2.14) in (2.13) we get the second order differential equation

T e i 1 20%né
(U T (G- L
r r "

e 2.15
2r r? i ( )
which is generalization of Wyman’s equation (Wyman, 1949).
Let us assume that total charge Q is given by
0 = Ar", (2.16)
where 4 is a proportionality constant and # is a positive integer.
Equations (2.15) and (2.16) together give
1 A et N 1
¥— < + -—) v+ (2 - - —2A2r2"_4e‘> y = 0. (2.17)
¥ I I r r
Now we define

e = 1(r).

(2.18)
Then equation (2.17) may be written as a first order differential equation in (r) viz.

. Vo 2. . 1_2 2.2n~—2
ot [20 Ty )] _ 2124 i ) 2.19)
r(y+ry’) r(y+ry)
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This has the solution

(r) = exp [ — F(r}] {jc exp [ F(r)]g(rydr+C}, (2.20)
where

= 2Ay+ry - rty'

r(y+ry)

—2p(1 = 24222 c
. ¥(1- ‘_"__,), F(ry = [ f(r)dr

and C is a constant of integration to be fixed by the boundary conditions.

3. Model solution

We want to find a solution of equation (2.17). Wilson (1969), Nduka (1976), Krori
and Barua (1975) have solved this by imposing various conditions that simplify the equation
and allow immediate integration. Once v and 1 are obtained, o and p follow directly from
equations (2.10) and (2.11). Equation (2.20) together with (2.8), (2.10), (2.11) and (2.16)
represents all solutions for static spherically symmetric charged fluid bodies. As a matter
of fact, one should not hope that all solutions will be physically reasonable. Only a sub-
class of these solutions, corresponding to certain functions v{r) will be physically reason-
able. Hence a specific choice of v(r) is essential. Here we specify v(r) in such a manner
that equation (2.20) can be immediately integrated. Such a choice is that y satisfies the
equation

"2)://__’_yr_zAZ’,Zn—Zy = Q. (3.1)

In this paper we consider n = | which reduces equation (3.1) to

Ry =y’ —24% = 0. 3.2)
On letting p = —1 and ¢ = —242, (3.2) is transformed into well known Euler’s equation
P2y pry' gy - 0. 3.3)

The indicial equation for (3.3) is
m*+{p—Dm+g = 0. 3.4

Three difierent cases arise, depending on the value of discriminant (Ritger and Rose,
1968)

4= (p—-1)*—4q. (3.5)
Case 1. 4 > 0. This requires 42 > —%. The solution is

y=ar'+br" (3.6)
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where a; and b, are constants to be fixed by boundary conditions and
I=1+4n m=1—y for n=+1+24° (3.7)
When (3.6) is used in conjuction with equation (2.20) 7(r) can be readily obtained as
(1) = 2=77) " 4 e P ET TG Q4+ P+ by (2 — )] 2@ TG (3.8)

where ¢, is a constant of integration to be fixed by the boundary conditions.
Now y and t are known i.e. v and A4 are known. The electromagnetic energy tensor
is given by

8nr’El = 8nrEf = —8nr’E2 = A% 3.9

Hence from equations (2.10) and (2.11), density ¢ and pressure p are given by

8rro(r) = 1 —t(n) = 2{Q2~n")()~1} (a1 +b))
{a,Q+mr"+b,2—-n} ' — 4%, (3.10)
8nrip(r) = 1(r) [a .3+ 2)r*"+b,(3=2n)] (a,r*"+b,) 1 — 1+ 4% (3.11)

We now impose the following boundary conditions: (1) The function e *i.e. 7(r) is con-
tinuous across the boundary (v = ry) of the fluid sphere. (2) The function €' is continuous
across the boundary (r = r;) of the fluid sphere. (3) The function ¢"v' is continuous across
the boundary (r = r,) of the fluid sphere.

The line element for r > ry is given by the Reissner-Nordstrom metric

2M 2 M 2\ -1
ds? = (1-— . i) dt* (1— 2 9&) e

r 1‘2

—r*(dO* +sin* Odd?), (3.12)
where Qg = Q(ro) and M is the total mass of the sphere given by

M = 4n | o(r)rdr. (3.13)

o

Using the above boundary conditions, the three constants of integrations a,, b, and c,
are given by

a, = (1—’6’—n-z‘é"—Q(z,/r'g)ﬂ_lrg', (3.14)
% % Qé =1 —-m
by = =\ 1—-C—1C~ — B 'ro", (3.15)
To

23— 1y~ 2(2—92)/(2~
C1={(6’—(2—'1) l} 2=n2)/(2~m

[a,(2 4"+ b, 2 — PRI, (3.16)
where
f=1-m
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and

c=1-M, &.

To r2
Case 2. A = 0 ie. A = +i(2)~"'2. The solution in this case is

y = r(a, logr+b,), (3.17)

et = 1(r) = 1 +¢,e***(2a, log r42b,+a,) " 'r?, (3.18)

where a,, b, and ¢, are constants to be fixed by boundary conditions. Density and pressure
in this case are given by

8nrio(r) = 1—1(r) {3—2a,(2a, log r+2b,+a,)” '} — 42, (3.19)
8nrip(r) = (r) {3+2a,(a, log r+b,) =1+ 4% (3.20)
where
1
_ (1—3‘6 % ) (3.21)
2r0 \/fg r

7 .
b, = V€ _ log "’;.(1-% Q°), (3.22)

To 2rg \/fg ro

= (%’—1)exp< p )(2—5/—% +az> s (3.23)
2

where ¥ has the same meaning as in case 1.

Case 3. A < Oie. A < +i(2)-'/2, The roots of the indicial equation (3.4) are conjugate
complex numbers

m; =o+id0 and m, = o6-1id,
where ¢ and ¢ will depend on the value of A. The solution in this case is
y =1y y,r7 ), (3.24)

where v, and y, are constants. This solution can be expressed in terms of real functions
by noting that

rié — ei«i logr
= cos (6 log r)+i sin (J log r). (3.25)
Hence the solution (3.24) can be written as

y = r°[a; cos x+ b3 sin x], (3.26)
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and
) L4 23T w W
e " =1(r) = l+cye i eXp4 | — . 5 + TLé\ X
wi+ w3 W3+ wy/
(@, cos x+m, sin x)~ @/ (@FFo?)
(@5 sin x +w, cos x)@4/ (@3 o) (3.27)
where
byd 2b,
w, =2+ ", w,=-— -9,
ay0 2a
w3 = 2— ‘i s (,()4 = —3 07
x=20logr (3.28)
and
Lo A1=249
b3 ’

From equations (2.10) and (2.11) density and pressure are given by

87tr2@(r) = (1(7’)—1)[——1+r{—< 2w1 5 + 2(03 )

2
wi+w; w3+ow;

W, .
— | -5 (v, cos x+w, sin x)~
(ul +(:)2

] Wy . -
(—wy sin x+w, cos X)+ 53— (w5 sin x+w, cos x)™!
1 2 5 5 (W3 4
w3+ w;

(w3 cos x—my sin x)}] — A%, (3.29)
8nr’p(r) = t+1[r log (20)+2(a; cos x+ b sin x)™ !

(— a8 sin x+ b6 cos x)]—1+A42, (3.30)

where X, @y, w;, w3, w4 have the same meaning as in (3.28). The constants a5, b5 and c;
are fixed by boundary condition and have the value

dy = COS Xorg " \JC ~ s (1—2%—70%’ Q31rd), (3.31)
Ty

by = sin xory 7 \/@ + - (1-2%—20%—0Q3/rd), (3.32)

2 o+ 1 \/_
W57 o w;
=(¢—1exp| L+ 5 exp + 3¢ Xo

i+ w3 w3+w4f
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@ai{e 2+ @32)

{wy cos x4+, sin xg)
. —mal 2 4+ a2
(w; Sin Xg +wy COs X))~ @4/ (@37 T @) (3.33)

where ¢’ has the same meaning as in cases | and 2, w, w,, ws, wy, L are given by equation
(3.28) and

v\'() == (5 ]Og Fg.

In addition the conditions p >: 0 and o 2: 0 in the interior of the fluid sphere will
impose further conditions on these solutions. We therefore restrict our solutions to those
values of the constants for which the pressure and density are positive.

If in equations (3.6)—(3.16) we set A = 0O the results coincide with those of Adler
(1974). Thus our solutions may be considered as generalizations of those obtained by
Adler.
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