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RELATIVISTIC BARRIERS FOR TWO SPIN-1/2 PARTICLES
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We separate the angular coordinates in relativistic Breit equation with a central potential,
and then split it into a system of 16 radial equations. We show in the case of positive potentials
V = ajr and V = p®r that after elimination of all wave-function components but one some
relativistic barriers appear between or around two Dirac particles. An energy-dependent
radius of such a barrier separates the relative space of two particles into an inner region
of partial confinement and an outer region of repulsion. The existence and character of
solutions in the partial confinement regions require further investigation.

1. Introduction

Recently, the discovery of the narrow resonances in e*e~ annihilation raised much
interest [1, 2] in the binding problem of two spin-1/2 particles and the role of relativistic
effects there. The most popular approach to this problem was based on the non-rela-
tivistic Pauli approximation to the relativistic Breit equation,

[E=E" ppVm D)= (=a® - p+ f2mP)—V(H)]y(r) = 0, 1)

where the phenomenological potential V(r) was usually taken in the form
-~ Ay ae
V(r) = — = +1%r+ Vo + Breit-like teims 5]
-
suggested partly by the quantum chromodynamics and partly by the quark confinement.

The Breit equation (1) represents the one-time formulation of the relativistic two-body
problem which has been derived several years ago from the two-time formulation provided
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by the Bethe-Salpeter equation [3] and also from the quantum field theory [4]. At the same
time a method has been described, how to separate the angular coordinates from the one-
-time relativistic wave equation for two spin-1/2 particles with a general interaction

energy [5].
This method, when applied to the Breit equation (1) with a potential of the form

=y (2 2
i = vy ams CEDTIN &)

gives the following radial equation [6]:

E+itd—o?y| 4 4 143 (@0 +a0a)
3 3 d}" ,

oo N+ D
;

— (" -l — P m - g2

= V()45 (o g a + 2a80) V’(r>} y(r) =0, (4)

whete j denotes the total angular momentum. Here V(r) and V'(r) are arbitrary radial
potentials. In the case of electromagnetic interaction we have V(r) = V'(r) = +afr. In the
static approximation we put V(r) = V(r).

2. Svstem of radial equations

Iu a given representation of Dirac matrices, the radial equation (4) can be written as
a system of 16 equations. For instance, let us use the particular representation defined
by formulae

al =g, x0, x1x1, 4‘12’,:1xa,xa§;<l,
o =g xIxlxo, o =0,x0;x1x0a,,
a’ = g,x0, x1x1, O((_;z)=1><0'1x‘72><1’
BV =6, xe, xIxa;, P =1x06,x0,x1, )

where ¢, 0,, 03 and 1 are the usual 2 x 2 Pauli matrices. Then we obtain the system of
16 equations listed in the static case in Table I [6], where the components f and g are
defined by relations

i = P — Vs = Ya— 7 £ = Y1+ Y 1= Pa+ P,
1 \/z ) J2 \/z ) 3 \/i > 4 \/z 3
- Y3~ VYs - Y2—Ys + Wit yg + _ Y2t Ys

g = \/Q s g2 = \/Q > gs*'\/"i—, g4 = \/2
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TABLE 1
The radial equation (4) in the static case written in the representation (5)
d by mtD T m®) - E_Vf"“ 0
I =
dr’* T 2 ‘ 2 3
mDEM® _ E-V iVi(i+1)
SR TS R werl B A
m +m® E-V
S E R =
d 2 m(D 4 m(® E-V iViGi+1)
N T ol * * F =
<dr * r)f:‘ - 2 I+ 2 I3+ r & 0
d N 1 - mD Em® T4 E~-V - o
ar )T L PR =
PROESHE) E-V iviG+l) o,
* 5 gft —5—gf————/y =0
mD + m2) E-V
* + * -
= 2 &, + — 3 &1 =0
d 1 m & @ E-V iViGi+1)
=+ —)egF+ — + - F=0
<dr+r)g°“ 2 ST Ty & P
and
[ = Yo—YPia I V12— Y15 I Yo+ P14 " Yi2+ P15
Jv = o, 2 = =, 3= TR Ja = =
V2 V2 V2 V2
+ Yii—VYie + Yo~ VY13 - Y11+ Yis _ Yiot¥is
Gl=m s =T B =T G = (7
N 7 7 J

The components f; and f, describe the states with the total spin s = 0, while the rest of
f’s and g’s — the states with s = 1. All f’s correspond to the spin magnetic number m; = 0,

1
while all g’s to m; = +1 and m, = —1 simultaneously, g = —ﬁ[g(ms = +1D)+g(m, =

= —1)], where the components with m, = -1 are given by relations

g1Fig
nu:i] = e = | mzil,
g(m, ) 7 Figa(m, )
+ig
g (mg = +1) = gz:/'igS = +igy(m, = +1) ®
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both for components “+" and “--", The components /% and g* differ from appropriate
components f~ and g~ by sign of the intrinsic parity = which is described in representation
(5) by the matrix

np VB = no, x1x0, %03, 9
where 72 = 1. In fact, /* and g’ correspond to n = +# while /~ and g~ to = = —#. They
are “large-large” or “small-small” components for = = +4 and “small-large” or “large-
-small” components for m = —5. Thus for states y with the total parity P = n(— 1)’

equal to £ the components *“+ " and “—" are related to (= 1) = +1 and (-1)' = F1,
respectively. It follows that these components can have the orbital angular momentum
1=0,2,4,...and / =1, 3, 5, ..., respectively, or vice versa. Here / = j for s = 0 and
l=j—1j,j+tfors=1ifj>0(nd/=sifj=0orj=sif/ = 0). The components
1™ and 2” have /= j, while "3 and "4” have / = jF1 mixed if j > 0 (and / = 1
if j=0). All g’s correspond to s =1, so they vanish for j = 0 as g, and g, have
/ =j and g5 and g, depend linearly on g, and g,.

Let us notice that in the radial equation (4) matrices o}’ and a%” which mix the
components ¥y, ..., wg and yq, ... ¥, appear only via their product

) = 1xe,x1x1 (10)

which is diagonal. This is the formal reason why the system of 16 equations given in Table I
splits into two separate subsystems of 8 equations containing vy, , ..., yg and v, ..., P1¢-
If j = 0 each of these two subsystems splits in turn into two separate subsystems of 4
equations for four f’s and four g’s, where all g’s vanish. For f’s we get in this case the
following subsystems of 2 equations for /5 and T (with j = 0) if we eliminate /¥ and fF
and consider the static case (where V(r) = V(r)):

d (mDFm®)?

d 2 (m'D £ m)?
=+ S fFHHE-V—- —— L ff =0 11
(dr r)fs [ o |3 (1)
In particular, the ground bound state, if it includes the components £, and f; with j = 0,
=0, s =0 and P =y, can be calculated from the system (11) with upper signs. By
iterating the first-order equations (11) we obtain for £ and f5 (with j = 0) the separate
second-order equations

av
> 2.d (E-V)+mPFm®)? dr d

ar* v dr (E—VY—(mOFEm®)? E—V dr

m(l)2

—m(®2\2
+3 [(E— VY —2(m'V? - mPy 4 (“_‘ET_) ] =0 (12)
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and

av
2 2d 2 (E=VY+(mMEmD)? E?(cz 2)

— - - — - _
dr? rodr P (E- VY —(mPFEm*)? E-V

dr r

m(D2 _ @2

2
+1 [(E— V)?=2mM? +mP?H+ (‘“E*—_V““) ] F=0. (13)

Either is equivalent to the system (11) in the sense of differential equations. We can confirm
from Eqgs (12) and (13) that the components f 5 and fF (with j = 0) correspond to / = 0
and [/ = 1, respectively (and P = +n).

3. Relativistic barrier

Now, let us consider the case of equal masses, m" = m® = 2m, where m =
= m" mP(mD +m?) is the reduced mass of two particles. Then Eq. (12) with upper
signs takes the form

dv
¢ 2 d dr d (E-=V)*—(4m)*
dr r dr V—E dr 4

f=0, (14)

where f = f5 (with j = 0). It can be rewritten as a Schrédinger-like equation (for j = 0,

s=0and /= 0)
L& -+ 2 d +Vyu—AE}f =0 (15)
2m \dr? rodr et -

where AE = E—4 m and
v

1 ar —E)?
e i_u_ug_z,n (16)

is an effective potential. If |(V—A4E)/4m| < 1, Eq. (15) goes over into the true Schrodinger
equation

52
(—~+V——AE>1;} = 0. an
2m

Eq. (14) differs from the two-body Klein-Gordon equation

2 2
[52_ (E—¥)"—(4m) ]VJ =0 (18)

4
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by the additional term
dyv

2mVE = dr 4 (19)
T V—Edr
which turns out to be characteristic for the double Dirac equation (1). We will show that
for ¥ > 0 this term gives an energy-dependent relativistic barrier (between or around
two Dirac particles in the state f}) with a relative radius ro = ro(E) determined by the
equation V(rg) = E. We will discuss this problem in the case of potentials V' = a/r and
V = p?r representing the well-known Coulombic repulsion and confining attraction,
respectively. To this end it will be convenient to introduce to Eq. (14) the function u=rf
obtaining equation
dv
2 dr (d 1 ) (E—V)*—(4m)?

Lo 4 R P
PV E\er T 4 " (20)

In the case of potential V' = +a/r, Eq. (20) takes the form

S

d* 1 1(d 1 o> aE
- + T - (‘7’ - 7) Bk ) i%T-% E*+@2m)* [u=0. (21)
4+ E

This equation implies the following limiting behaviour of u
if r>o0:iun~ et k=L1JEP-(4m)?,

ifr—-0:u~7r, y=\/1—oc2/4

. o a\?
fro —:u~f{r——jJ.

The last property indicates that in this case a relativistic barrier appears for f; at r = «/E.
This is consistent with the fact that the effective potential (16), which is given for V' = +a/r
by formuia

and in the case of V = ofr

. 1 1 1Nd L o N 1 «E 1 E 4 E—2 22)
e 2] —— e = — ] e e e e e —<im,
tr rldr  8m #? idm r 8m

grows to infinity for V = o/r if r - o/F as

i 1 1 d 1 2
Vel =5 ——— o f 2 @3)
m
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The energy-dependent radius r, of this relativistic barrier is always smaller than one half
of the classical radius r. of each of two interacting particles,

o= e =y 4)
0 E  4m e

if only E >> 4m. For instance, in the case of two interacting electrons ry << 1.41 x 10-13 cm.
Obviously, r, — 0 if E — oo. We can see, therefore, that two Dirac particles interacting
by repulsive potential V = z/r are in the state f; either separated (» > r,) or confined
(r < rg) by this barrier, since V, is finite in two separate space regions r > r, and
0 < r < ro.! Notice that in the first region ¥V f is repulsive and switches off if r — o0,
while in the second region it is attractive and gives

1 &

5/ (25)

Ve >~ — -
el 16m? r

if ¥ — 0. Thus, for extremely small r the relativistic attraction ~ «?/r2 dominates. We should
like to stress that the effect of relativistic barrier, appearing for repulsion V = afr, does

not occur in Eq. (21) for attraction V = —a/r since then V 3 E.
In the case of potential V' = u?r, Eq. (20) assumes the form
112+ ] d 1 ut EV? e 0 26)
dr? E\dr r 4 ’ TS +@myu = 0. '
Fe— ey
H

The following limiting behaviour of « is implied by Eq. (26):
ifr—->ow:u~ eii*”m,

ifr—-0:u~umn,

o E E\?
Hnr—=>-—si~t{r——i.
e w

Thus we get for f; a relativistic barrier at r = Efu2. It is consistent with the effective
potential (16) which is given now by formula

1 1 d u‘* E\? E—2 N
Vg = — ——— — — —|r— = | +E~2m

T om E dr 8m T
r

and

! In a state corresponding to a single component of the wave function v, we can speak only of partial
confinement, since a leakage through coupling of various components is possible, unless the confining
barrier is common to all components of .
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and rises infinitely if » —» £/ as

o 1 i d i 2
Veer/ = — - [ e fo (28)

om o E dr 2m EN

F— = r— —
I Iy

If E = 4 my, where m > 0 is an effective reduced mass of two particles, the energy-

-dependent radius r, of this relativistic barrier is always larger than 4m,g/p?,

E _ 4m,
ro = — > Tetr (29)

ool

For example, in the case of charmed quark and antiquark interacting by potential V' = p?r
alone, we get ro 2 3 GeV/y?, if we put 2m = 1.5 GeV. Evidently, ro —» o if E > .
It can be seen, therefore, that two Dirac particles interacting by attractive potential ¥ = p?r
are in the state /', either confined (r < r) or separated (r > r,) by this relativistic barrier,
because V. is finite in two separate space regions r < ry and ro < r < oo (see footnote
no 1). Notice that in the first region V. f is attractive, while in the second region it is
repulsive and gives
4
Vegef =~ — . r’f (30)
8m
if ¥ - c0. Thus, for properly large r the relativistic repulsion ~ p*r2 dominates. Since the
effective potential (30) does not switch off for » — oo, the mutually repulsing particles do
not become free for infinite separation. In fact, they are perpetually accelerated by in-
finitely growing repulsion.
In the case of the more realistic confining potential given by Eq. (2) there exists also
a relativistic barrier described by formula (19), because the equation V(r,) = E has a
(unique) positive solution equal to (we drop the Breit-like terms)

1 e —— e e mn,
o= 02 [E—Vo+ V(E— Vo) +40u?]. €Y

This relativistic barrier separates, as in the former case, the relative space of two Dirac
particles in the state £ into an inner region of confinement (r < r,) and an outer region of
infinitely increasing repulsion (r > r,) (see footnote no 1). Of course, the phenomenological
confining potential (2), suitable for the nonrelativistic Schrodinger equation (17), may be
physically inconsistent with the relativistic double Dirac equation (1). One should remem-
ber, however, that this presumably more exact equation goes over into the non-relativ-
istic Schrédinger equation with the same potential V if |(V—A4E)/4m| < 1.

As a final remark we should like to stress that, so far, we discussed only Eq. (12)
with upper signs which gave Eq. (14) in the case of equal masses m'" = m‘® = 2m.
In the same case Eq. (12) with lower signs takes the more complicated form

dv
(dz 2 d) L (E- VY +(@dm)? dr d (E—-V)—(4m)?

o =0, (32
(E=V)*—(4m? V—E dr 4 4 (32)

— +
di? rodr
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where now f = f; (with j = 0). Beside the singularity at the point r = r, determined by
equation V{ry) = E we get here two other singularities given by equations ¥(ro) = E4+4m
and V(ry) = E—4m. In the case of Coulombic potential ¥ = +a/r we obtain beside
ro = a/E two additional singularities

% o o (33)
,0—E+4m’ IO‘E—4m_AE

for repulsion V' = «/r (and energies £ > 0 and £ > 4m, respectively), and one singularity

jod x

" T Gm—E~ Z4E S
for attraction V = —afr and energies E < 4m (i. e., for bound states). At these three
singularities there appear relativistic barriers for /5, since if ¥ — ro, we get

dv
o L E=VYP+@m? dr d 1 1 d 35)

2m (E— V:—(4m)* V—E dr 2m Ferg dr

and f~ (r—ry)%. On the other hand, at the singularity ro = o/E there is for /5 no relativ-
istic barrier, because now

dV
I E=VEm® A 4] d 36)
2m (E=V)Y —{dm)* V—E dr

B
eff —

2m r—ry dr

{
and f~ (r—ry)° <1hough ; S~ r—/'U).
A

It is easy to recognize from Eq. (13) that the structure of singularities for f; and /7
(with j = 0)is the same as for /5 and f (with j = 0), respectively. However, while for f3
and /3 there exists only the barrier corresponding to V(ro) = E, for f; and f5 two barriers
related to V(ro) = E+4mand V(ro) == E—4m develop. Thus, there is no relativistic barrier
common to all components of the wave function y (with j = 0) and, consequently, no
impenterable barrier for two Dirac particles, since there appears a leakage through
coupling of various components.

4. Analogy with Dirac equation

One can notice that the singularities given by equations ¥(ro) = E+4m and V(ry) =
= E—4m (but not V(r,) = E) have their analogues in the one-particle Dirac equation

[Ep— (& ' 5"‘ pmp)— V(;)] 'P(?) =0 (&)
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where ¥(r) is a phenomenological external potential which is assumed here to be central,
V(r) = V(r). Then, using the Dirac representation

& =0x06; f=1x0;3 (38)

and denoting the “large” and “small” components by

o _(n (v
W o= s y o= 39}
4 ( %) ; (%) (39

we get after iteration of first order equations the following separate second-order radial
equations

dV
d? L 2d I+ 1) dr d o+ D—I(l+1)—3
dr? rodr r Ep+mp—V |dr r
+(Ep— V)Y —mat y, (1) = 0, (40)

where ;5(r) are the components with / = j,—1 and / = j,+1 of the radial functions y~(r)
with a given j, = 1, 3,3, ..., sp = 1 and intrinsic parity 7, = +# (which is described
by the matrix nf, where 5? = 1). In Eqs (40) with labels “+” there appear the singula-
rities related to equations V(ry) = Ep+myp, respectively. If j, = 1, Eqs (40) for y& and vT
are analogues of Eqs (12) and (13) for /¥ and f5. We can see that also in the case of
Dirac equation there is no relativistic barrier common to all components of the wave
function . We get, therefore, no impenetrable barrier for a Dirac particle in an external
potential, since there appears a leakage through coupling of various components.

5. Conclusion

While there is no confinement of two Dirac particles caused by relativistic barriers,
the physical reality of the confinement for various wave-function components depends,
of course, on the existence and character of solutions inside these barriers and also, more
fundamentally, on the applicability of double Dirac equation (1) to the small-distance
regions. We hope to come back to the first question elsewhere?

2 In particular, a phenomenon analogous to Klein paradox which is a well known disease of the one-
-particle Dirac equation, requires special attention (cf. Ref. [7]; we learnt of this work after completion
of our paper).
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APPENDIX

1t has been observed by Z. Otwinowski that in the case of m'") = m® the subsystem
of 8 equations with upper signs in Table I splits for arbitrary j into two separate sub-

systems of 4 equations for f,", f;', fy", g2 and g{, g3, g5, /s , respectively. This is not the
case, however, for the subsystem with lower signs. If we eliminate f,", g, or gi,f, we get

d _, o
(’l‘i;fz +3(E-V)fs =0,

d 2N\ ., 4my  4G+D7 ., _
- (E + 7>f3 +7[E_V— ey rz(E—-V)]fZ =0, (A1)

or

d Yy . -
ar T8 +2(E-V)gs =0,

d 1\ _ o dm? 4G+
-+ - NE-V- - - |gs =0, A2
(dl‘+ r>g3 +2[ E_V I‘Z(E—V) 82 (A2)

where m'V = m'? = 2m. By iterating the first-order equations (A1) or (A2) we obtain

dv
A2 2d j(j+1) dr d (E=V)*—@m)?| .
— = oY R A SR =0, A3
dr? M rodr 2 + E—-V dr + 4 f2 (A3)
[ 2 d_ju+h+a
ldr? rodr r?
dv
. 2 4+ ] dr 8j(j+1)
E—VY+@dm)’+ - = - ,
- s —— - e — o —— s — e 4 e — —T— -
o A4j(+1 Ir
(E—1)—(4m)* - --J(Jr: ) o
E—-V) —(4m)?
e e (a9
or
dv -
A2 2.d  jG+l) dr [d 1\ (E=Vy—(@m)?| ,
— 22 ! ST DI T =0, (A5
T ri +E—V(dr r 4 & (A3)
(4,24 jG+D
r r dr r
ld 2 2
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dy
) L dG+D] dr 8ji(j+1)
E— V)2 +(4m)? -
[( VA my 1'2 E-V P d 1
* I 1(j+l)  \dr + B
(E— 1) = (4m)?— 200
r?
E—-V)y —(4 _
+( /7)74~ ") }83 ~o. (A6)

If j = 0, Egs. (A1), (A3) and (A4) reduce to the respective Eqgs. (11), (12) and (13) (in the
case of m'" = m'?),.

The components f,, f, . f5 , . and g, g7, g5, f. describe in a relativistic way the
states denoted by nonrelativistic spectroscopic symbols n*/f and n3/F, respectively, where
P = +y corresponds to evenjodd /. The remaining components /5, £, g7, g4, /1 (= 0if
mD = m?), f7, g7 (= 0if m'D = m?), g7 describe the states n*l[,,, where P = Fy
corresponds to odd/even /. The components “+” or “—" are combinations of “large-
-large” and “‘small-small” components or “small-large” and “large-small” components
respectively, In fact, the components

(6c1+”)+(“7+”) (c¢3+”)i_(“4+”) {“large-large” }
e and s are { "
V2 V2 small-small
while
(*3=")+(“4-=") (“1 -~ TYF( 2 {“small-large”}
e .5 and - S -— are § .
V/2 Vv 2 farge-smali

where the upper/lower signs correspond to the upper/lower adjectives in parentheses { }.
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