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PHOTONS AS A DETECTOR OF GRAVITATIONAL WAVES
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Department of Solid State Physics, Academy of Mining and Metallurgy, Cracow*
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Physical and technical problems associated with the application of the photon-graviton
resonance for detection of gravitational waves are discussed. An estimation of experimental
possibilities in the meter range is given.

1. Introduction

Experiments concerning general relativity are based on measurement of small physical
effects. The cause of big difficulties awith the detection of gravitational waves is the small
cross-section of the graviton-matter interaction. The method of detection suggested by
J. Weber is based on measurement of mechanical vibrations excited in a quadrupole
resonator by a gravitational wave. In such a method only a small part of the gravitational
wave energy changes into mechanical energy, which can be measured by physical methods.
The general theory of relativity predicts interaction of gravitational waves also with zero-
-rest mass particles. The photon-stationary gravitational field interaction is one of the
most often measured effects of general theory of relativity. Particularly accurate measure-
ments are obtained in the experiment applying the M&ssbauer effect. The question is —
“Is it possible to apply photons for detection of gravitational waves?” The application
of photons for detection was suggested in 1971 by Braginsky and Mensky [1]. Since that
time -several works have been published [2, 3]. In this article a possible solution of
experimental difficulties is suggested and also a research possibility is discussed.

2. Photon-gravitational resonance

To replace masses by photons in a gravitational detector one has to solve two problems.
The first one is to find a configuration of the electromagnetic field which interacts strongly
with a gravitational wave. The second one is to find an experimental method of measuring
changes in the electromagnetic field through which we can measure interaction between
the photon field and a gravitational wave.

* Address: Zaklad Fizyki Ciala Stalego, Akademia Gorniczo-Hutnicza, Al. Mickiewicza 30, 30-059
Krakéw, Poland.

(553)



554

To solve the first problem we should find a resonance configuration in which the
energy exchange between both fields is maximal. To solve the second problem one has
to find a method of measurement in which limitations of accuracy would have only
quantum character.

To see the possibility of resonant momentum exchange between wave field and a system
of particles let us consider the motion of a quadrupole rotating in the plane perpendicular
to the wave propagation direction. In the particular case when the quadrupole rotation
period is one an a half times longer than the wave period, both quadrupole masses are
in a force field having the same direction of action. This means that the angular momentum
of the quadrupole will constantly decrease as a result of interaction with the wave field.
This interaction has a resonance character. An exchange of momentum between the
quadrupole and wave can last as long as the periods are adequately synchronized.

The position of a maximum of the accelerated quadrupole differs from the position
of the moderated quadrupole by 90°.

We can expect a similar mechanism of momentum exchange when we replace the
masses by photons. The photon path geometry suitable for this purpose is assured by
a toroidal waveguide. Inside the waveguide the electromagnetic field can move only length-
wise along axis. We place the waveguide plane perpendicularly to the direction of propa-
gation of a gravitational wave. If the wave propagates in the x' direction and is polarized
in such a way that the axes x> and x® are polarization axes, the electromagnetic field
moves in space-time given by the metric

2 2 2

ds? = c¢di? —dx' —[1+h(x", )}dx* ~[1—=h(x", )]dx> , (2.1)

where h(x!, 1) is the wave amplitude.

Let us consider two photons with the same momentum, which move inside the
waveguide along two null geodesics placed near by each other. Since the motion of photons
in the waveguide is not disturbed as long as they are not totally absorbed, their momentum
is changed only by the gravitational field. When photons are placed in two points such
that the time coordinate difference 6x° = 0, the difference of their space positions 6x* # 0
causes a momentum difference dp;. This difference can be found with the help of a parallel
displacement of one photon into a position of the second along the vector 6x* The
difference 8p' will constantly change during the motion of photons. In the interval of time
dx® = cdr, 5p' will change by

. 1
dop' = — — Riyp’6x*p'dx°. 2.2)
p

Expressing the space interval as x* = n*x, where n” is a spacelike unit vector, using
the notation p* = n*p°, assuming that the gravitational field is weak and using the sym-
metry properties of the curvature tensor one finds that

dop®

= —-cROaOﬂn“nﬂéxdt. (2.3)

p
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This equation expresses simultaneously the relation between the difference in frequencies
of both photons.

On the waveguide circumference it is convenient to introduce the angular distance
between photons Jdy so that dx = rdy, where r is the waveguide radius. Let us assume that
a waveguide is placed at x' = 0, and consider two groups of photons circulating the
waveguide with angular velocity w,. The coordinates of both groups in the x2, x3 system
connected with the wave polarization axes will be y, and y,. Expressing the components
of the curvature tensor by the wave amplitude 4(0, 7) according to the equation

1 .
ROaO,,n"nﬁ = 1 h{t)cos 2y 2.4)

and integrating over Jy we have from (2.3)
dog | r.. )
—— = g = h(1) cos (y,+7,) sin (y;—7,)dt, (2.5)
Wg c

where wy is the initial photon frequency. For two groups of photons separated by 1/4 of

the circumference i.e. for

V1= Wel, Py = wet+m/2,
the frequency displacement reaches the value

dwg

dt

, T

8

= h(1) sin 2wt (2.6)
When the gravitational wave frequency /(r) is close to 2w,, the right-hand side of the
equation (2.6) does not oscillate and the relative change of the photon frequencies increases
with time. After the interaction time 7 the photon frequency will be

W = Wp+w, sin 2w,l, 2.7

where
t

dwy
w, = ? dt
V]

is the integral of equation (2.6). The interaction of photons with the wave field results
in the change of their energy, which moves inside the waveguide with a group velocity near
the velocity of light. In such a way r is connected with the angular velocity of motion of
wave packets inside the waveguide

r = vg/ay. (2.8)

In the case of interaction with monochromatic radiation 4(¢) = h, sin wyt and the problem
leads to the equation

dw v, Wp . .
—L = L2 T lhy sin o, - sin wyt, (2.9)
dt ¢ W

s
@®;
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where w, = 2w,. As a result we obtain
_ 1 Ug
w, = 3 — Opw,hotl(w), (2.10)
c

where f{w) = sin dwt/Awt and Aw = w,—w, We can interpret the function I(w) as
a resonance curve of an interaction for the photon-gravitational resonance. It confirms our
qualitative considerations, a maximum occurs for Aw = 0, that is for photons circulating
the waveguide with frequency equal to a half of the gravitational wave frequency.
A bandwidth of interaction curve is inversely proportional to the time of interaction of
photons with the wave field.

The frequencies wy and w, are not independent in the case of resonance. It follows
from boundary conditions for the field which fills in the circular waveguide that

Nipg = 27r, (2.11)

where Ap, = v /v, v, is a phase velocity of the electromagnetic wave inside the waveguide,
and N is a natural number. From (2.8) and (2.11) follows that

_va
—21‘

op W

N (2.12)

g

3. Detector construction

As we pointed out above, the resonance interaction results in the modulation of the
electromagnetic field frequency in the waveguide. Along the waveguide circumference two
groups of photons with increased and decreased frequencies are created and these groups
are separated by 90° of its circumference (analogy to the accelerated and moderated mass
quadrupole).

The connection between frequency and phase is

dy .
— = . 3.1
¢ 3.1

Thus, taking into account (2.7), the phase change of the electromagnetic wave is
Y = gt + P, COS WL+ Y, (3.2)

where y, = w, /o, and v, is initially selected as a free phase. The maximum of phase
deviation occurs for the time difference At = T,/2 = 1/2v,. If interaction with a mono-
chromatic gravitational wave takes place, the magnitude of phase oscillation is, according

to (2.10),
v
Y, =+ chg howptl(w). (3.3)

Because of the expected magnitude of /,, the modulation phase amplitude is very small
and there is a problem in measuring it. Experimentally a phase oscillation of the order
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of 10-"rd or less is expected. The measurement of such small displacements is possible
only with the help of interference methods. In a resonance, according to (2.7) and (3.2),
the amplitude of phase deviation has a maximum for the time difference 7,/2. This occurs
at points of the waveguide separated by 1/4 of its circumference.

Interference measurements of the electromagnetic field phase deviations which occur
between the waveguide points separated by 1/4 of its circumference are the basis of our
detection method.

Let us consider a wave running along a nondispersive waveguide; the wave is described
by the equation

g(x, 1) = @g cos {wpt—kpx + yp cos (w,t —k,x)}, (3.4)

where ¢, is, for example, the amplitude of the electric field and x is space coordinate
along the waveguide axis. In non dispersive media the phase, as well as the phase modu-
lation, are propagated with equal velocities wg/ky = w,/k, = v, = v, = v. Electro-
magnetic fields leaded out from two points with coordinates x, = x, and x, = xo+4,/2
of the waveguide will interfere as foliows

q l('Yle t) = o COS {(’)FI“'I(FXO—J‘_’L}!A COos (wrt—ero)}’
. N .
@,(x5, 1) = @ cos {wFt—-kFxo— 5 T+, COS (w,t~lc,x0—n)} . (3.5)

Using a summing interferometer (g, = ¢, + ¢,) in the case when N = 4n+2, or differential
interferometer (¢, = @, —@,) when N = 4n (where n is natural number) we can obtain
the interference amplitude as

e 1) = 24y, cos {w,t —k,xg) sin (gt —kpXxg). (3.6)

It is convenient to use in this experiment photons from the microwave range, other ranges
are not suitable for this purpose. An interaction of photons with the gravitational wave

Fig. 1. Realization of phase detection process. 4,, 4., A3, A; — controlled microwave switches, I — inter-
ferometer system, R — microwave receiver

and also a separation of them can be made with the help of waveguides and microwave
switches, which are easy to make for this frequency range. A full utilization of electro-
magnetic field inside the waveguide is assured in the detection system given in Fig. 1.
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When microwave switches 4,, A,, A; and A, operate simultaneously, photons from the
circular waveguide will go to the external waveguides and will interfere in the interfero-
metric system. The whole interference process will take 1/4 of circulation period of photons.
Function (3.2) modulated in phase is changed into the expression (3.6) modulated in
amplitude. After the Fourier transformation of the signal (3.6) we will obtain the detected
signal spectrum

g (o) = é Pops [0+ ) —d(w—wp)]+ [Hw+wp)—dw—o)]}. (3.7

The signal detected in the interferometer output occurs in two frequency ranges
wg = wp+w, and wg = wp—w,. The receiving circuit should work in one of these
ranges. It makes possible accurate measurements of the power of the detected signal.
The measurement of power of this signal allows one to determine accurately the gravita-
tional radiation flux; to this end it is necessary to know additionally the electric field
amplitude and the interaction time. Such a measurement can be made with the help of
conventional methods of microwave techniques.

4. Limiting observation possibilities

The estimation of observation possibilities of above detection method requires
additional assumptions. At first we assume that the detector waveguide and microwave
switches are lossless elements; lack of losses in the motion of photons allows one to carry
on their interaction with a gravitational wave through an arbitrarily long time. The second
assumption is that in experiment there are no factors which disturb the phase distribution
of photons during the circulation period and in the phase detection process.

Let us determine the power which one obtains as a result of interference of photons.
This will allow us to settle the role of noises of a microwave receiver used in the experiment.

During the detection we try to keep a constant number of photons n being in inter-
action. It follows from previous considerations, particularly from the expression (3.6),
that at interferometer output we have

ny = ny’ @.1)

photons with two frequency ranges wy = wptw,. Thus energy which we obtain as
a result of interference equals

W, = hogn,. 4.2)
The energy of thermal noise of microwave receiver collected in this time is
We = kTin, (4.3)

where Ty is the equivalent temperature of receiver noise and # is a coefficient dependent
on the detection method applied. Limiting conditions of signal registration take place, when
detection energy W, becomes comparable with the energy Wi,

W, = W (4.4)
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It follows from this condition and from the expression (3.3), in which. the wave amplitude
can be expressed through the energy flux

C
——— hyl U) 4.5
T 320G ° “43)
that minimal flux of gravitational radiation, limited by thermal noise of a microwave
receiver, is
4¢? czz'g kTyn

§= o Cfe XM 4.6
nGh ¢, N'omnt® (4-0)

For small T we can expect in the detector the quantum noise of phase. Number of photons
and magnitude of phase are complementary quantities. Thus the accuracy of phase measure-
ment in each quantum system is finite. The interferometer-receiver system fulfills an
uncertainty relation of the form

|
Ap = —— 4.7)
/
2/ n
where n is the number of photons in the measurement. The limiting range of the detector
is obtained from the condition

Ap = p, (4.8)
and thus
27 ¢ 0

G o NTE

S = (4.9)
The expressions (4.6) and (4.9) are similar, only the thermal energy of the receiver k Ty
has been replaced by hw,. The quantum phase noise begins to play a role when

k
ST (4.10)
h

Wy >

For the frequency vy = 10'° Hz (microwave range) a role of the phase noise becomes
essential when 7, = 0.5 K. This temperature is lower than the temperature of noise of
the best maser amplifiers operating in this frequency range. Thus the phase noise is not
an essential limitation here. From (4.10) it resuits that for photons near the optical range
with vp = 104 Hz, the photon noise does play an important role. Since from (2.12)
vg ~ v,, there are quantum limitations of detectable gravitational flux in the optical
frequency range.

5. Method of continuous interference

The condition most difficult to fulfil is a sufficiently low photon absorption. The
attenuation for the best switches is at least of the order of 10 per cent.

The absorption of photons by the detector circuit causes a considerable shortening
of their time of interaction with a gravitational wave. Therefore a detector without switches
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would be considerably better. It 1s possible to construct such a detector if we can realize
continuous detection instead of pulse detection. For this purpose one can lead out a small
stream of photons from two points of the detector waveguide, Fig. 2. These photons can
give continuously the detected signal after sending them to the interferometer. A constant

\SK

. K
T

A A\l 1 p-— R
. —

*K3 Ks

G

Fig. 2. Gravitational detector with continuous realization of the Mterference process. G - source of
photons, K, K., K, — directional waveguide couers with a small coupling coefficient, 1 — interferometer
system, R — microwave receiver

number of photons in circulation can be assured by an external source of photons. Besides
the waveguide the only cause of photon losses in the detector system with continuous
operation is a detecting process. We will prove that the optimal number of photons to
be led out for detection is comparatively small. The probability that a photon travels
a waveguide segment of length x equals [4]

p(x) = exp { —aopx}, (5.1

where oy, 1S @ quantity equal to the classical attenuation coefficient of the waveguide.
The waveguide attenuation coefficient for one circulation is equal ay = 2nrog,. The
total attenuation coefficient for one circulation, taking into account loss of photons
destined for detection, is

oA = dp+oy, (5.2)

where o, is connected with the detected photons. It results from these considerations
that during one circulation n(l —e~ %) photons leave the detector circuit (n is the number
of* photons in circulation) and the same number must be introduced into their place. The
photons can be introduced in two ways: either by amplification with the help of an amplifier
placed in the detector waveguide circuit or by injection from an external source (Fig. 3).

Let us consider the first possibility. Insted of photons which have already made
a number of circulations in the gravitational wave field, new photons which do not carry
any information about the wave are inserted. They can contribute to the detection only
after a number of circulations, provided they are not absorbed before. Both the absorption
and the creation of photons are stochastic processes, therefore the number of photons
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in the detector is a stationary stochastic variable n(r) with a mean value <a(¢)> = n. To
describe the information meaning of photons in the detection process, it is convenient to
consider groups of photons with exactly the same number of circulations around the

_ - hve

ne® - n
>
/ ) K i
hve | Y 6 \ /
\ /
\“/’/
n(l-e®) A{1-e7%)

o b

Fig. 3. Two methods of keeping the constant number of photons in the waveguide of a detector with
continuous interference. a) detector system equiped with photon amplifier U, b) system with the external
source of photons G

waveguide during the interaction with the gravitational wave. In this way a vector stochastic
variable is formed

(1, 1), n(2, 1), ..., n(r, 1), ...}, (5.3)

for which the mean value of its r-th component {(na(r, t)> = n(r) and expresses the mean
multiplicity of the group of photons which performed r circulations. Let us determine
the power obtained in the detector output as a result of the interference, which continuously
takes place. The right-hand side of Eq. (4.2) can be represented also as a function of the
number circulations

P(r) = Pyyinr’. (5.4

Now we can see the physical sense of the power equation. P, = hwpw,/4r is the power
carried by a single photon during one circulation and y, = nv,Nhe/2¢ indicates the mean
phase displacement of each photon, which takes place in this time. This expression is
true when all # photons have the same number of circulations ». When there are groups
of photons which have some multiplicity distribution n(r) as a function of the number
of circulations, detection power will be proportional to the second distribution moment M.
In the interference process n(l —e™*') = ny, photons take part: the power obtained in
this process equals

P, = POWSHMZVA’ (5.5)

i ,—
M, = — roa(r).
n
r=0

where
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One can prove that distribution of photons in the considered detector is such that

n(ry = n(1—e %e ™. (5.6)
Thus M, = ¢*/(e”*— 1)>. Equation (5.5) can be written also in the form
P, =0S.
The coefficient
5 = PopoMyy, (5.7)

expresses the effective surface of photon gravitational detector for a monochromatic
radiation. Similarly as in the case of the pulse detector, we obtain the minimum of gravita-
tional field flux from the condition

P, = kTgng. (5.8)
From expressions (5.5), (5.8) and (4.5) we obtain

¢ o, kTyne

S=—— -t (5.9)
P

2Gh ©2 N°nQ,’
The function

Q, = My, (5.10)

describes summarily processes connected with losses of photons. This function has a maxi-
mum for some value of apfa, and then the detector sensitivity is also maximal. In the
range o < |

0, = —" (5.10)

and the optimum relation is ay/a, = 1. This means that only 1/2 of the photons absorbed
in the waveguide takes part in the detection process. We should remember that the above
expressions hold only when the stochastic variable n(z) is stationary. The variable n(t)
becomes stationary after the characteristic time 7, = 2M,/v, from the moment of switching
on the detector; M, = ¢ %(1 —e” %) is the first moment of the distribution function n(r).
For this reason the bandwidth of detector /(w) is of the order

v, -
5 v, (5.12)

1
tn—Ml_

B, ~

The method described above can be used to register very small fluxes, especially in
the case when superconductive materials are used for the construction of waveguide
walls. For example, for a superconductive rectangular microwave waveguide with the
sides ratio b and for the TE,, mode excited, the resulting average number of photons is
L‘; E?

TS EpL N
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where E, is the amplitude of the electric field, Z, is the impedance of the medium inside

the waveguide. The group velocity ¢, = ¢ \/'/1—-52 and ¢ = nc/bwg. If we use photons
with frequency v, = 50 MHz, the observation frequency v, = 10 MHz (r = 6 m), the electric
field amplitude E, = 10'° V/m, n reaches a value 10*®. This means that for the equivalent
receiver temperature 7z = 1 K and the resultant attenuation coefficient o = 2 - 1013
it would be possible to observe the flux S ~ 10-'* W/m? after a period of signal fixing
t, = 10°s.

Sensitivity of the detectors with continuous action is also limited because of quantum
effects. To estimate the sensitivity, we should construct an expression similar to (5.5)
expressing the level of the noise power of quantum origin as a function of the interfero-
meter output. In this way the noise power connected with the group n(r) of photons can
be written in the form

Pn(r) = POA?/’?’_’(")VA’ (5.13)

where 4y, is the quantum uncertainty of phase due to measurement of the phase angle
during detection of the signal made by this group of photons. This uncertainty according
to (4.7) is

i
A?/}r = === (5.14)
2vn(r)
Thus
Py(r) = % Poy, (5.15)

and we obtain an important result: the level of noise power of quantum origin of the
detector system equipped with an external photon generator does not depend on the
multiplicity of photons n(r). The relation between the signal power and the noise power,
according to (5.5) and (5.15), is

F = 4nyiM,. (5.16)
Thus, when F = 1, the minimal radiation flux is
3 2 2

S c c w;
- 320°G v} N*nM,'

(5.17)

The minimal flux calculated on the basis of (5.17) is of the order of 2+ 10-'7 W/m?2.

6. Comparison with other detection methods

The estimations obtained above, concerning the minimum detectable radiation
flux, differ not only from the observation possibilities in the case of mechanical detectors
but differ also from the estimations obtained for other detection methods, including those
using interaction of the gravitational field with the variable electromagnetic field.
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Differences associated with various procedures are undoubtedly worthy of mention
and that is why we will make a short review of the methods described up to now.

The first group of methods is described by Braginsky et al. [, 2] and Grishchuk
and Sazin [3].

The resonator configuration considered there has at least two proper vibration modes,
which differ in frequency, for example: w, > w,. In such a configuration a gravitational
wave of frequency w, = w,~w,,, can cause a transfer of energy from one mode of vibration
to the other. Quanta of higer energy w, are created at the cost of gravitational energy.

The time dependent electromagnetic field amplitude of mode n consists of the initial
amplitude ¢,/ and a component of gravitational origin ¢,'“. If ¢,'” = 0 the energy
increase of the mode # is

Wy~ [ ~ 02

and detection is made at ‘“‘zero level”, which allows one to detect the energy
W, = kTg.
The quadratic 7 dependence of W does not hold for ¢,'” # 0. The energy change is now
WA ~ A[‘f (0)_’_90 (G)]Z ~ ¢ (0)(/: Gy !
which is small against the background energy W, ~ [¢,(0)]%. Signal determination condition
has here the form
W, = 2N WokTy .

For both reasons this case is less advantageous then the previous one.

The second group of methods is based on the interaction of a gravitational radiation
wave with wave packets circulating in a circular or other resonator which fulfils certain
conditions [2]. The interaction of wave packets causes their energy to change at the rate

Wy Wy ~ wgthy.
That is why we can measure this change. However the rule
W, = 2NV WokT,

again should be applied here. It is clear from the considerations above that it is convenient
to get rid of the constant energy level in the detection process. Substraction of the electro-
magnetic fields, obtained at two waveguide points before an energy measurement, is made
upon them, and is the only effective method here. Then their relative phase dependences
play a fundamental role. A detection made in such a way was discussed above. Because
during resonance there is a relative phase shift between both wave packets

’tpd ~ wplko,
we obtain a rate of energy change

Wy~ Woph ~ 1
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at “'Zero level”. The essence of the interference detection is an amplification effect due to
the release of some previously stored electromagnetic field energy that takes place as a result
of interaction of the gravitational field with the detector. In other words, this interaction
is sort of a controlling mechanism triggering off stored energy. The detection energy is
proportional to ¢* while the interaction energy is linear in ¢; this is a consequence of the
fact that the detection energy at the output of the interferometer results mainly from the
electromagnetic field of the waveguide and is not the energy absorbed directly from the
gravitational field.

Because of this interaction mechanism, the cross-section of the detector for inter-
action with gravitational radiation has here a little different sense than generally accepted.
It can reach a large value on the basis of expression (5.7)

212 07272 Gh
g =nlN"nQ,, where I, = [—. 6.1
c
The dimensionless number
2 —
¥~ :% N*nQ, (6.2)
bt

characterizes the detector (it is a proportionality coefficient between the detection energy
and the gravitational field flowing through the detector’s geometrical surface).

_ -
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Fig. 4. Heterodyne properties of the photon gravitational detector

From the experimental point of view, the detection of interference has one more
remarkable property which allows one to rank it in the class of heterodyne systems (Fig. 4).
According to expression (3.6) the amplitude of the detector output signal

s ~ hopg COS W, 1+ COS wpt 6.3)

is a product of the amplitudes of the gravitational field and the electromagnetic field.
The analogy to the heterodyne systems considered in circuit theory has a wider range.
The gravitational photon detector has four characteristics of heterodyne systems:

1) cooperating with its microwave receiver must be tuned to one of two output
frequencies wy+w, and wWp—w;



566

2) frequency response of the cooperating receiver should be, considering a maximum
of noise matching, equal to the heterodyne detector frequency response;

3) in the circuit there exists a noise process which limits the amplitude of registered
signals. It is a quantum noise of phase;

4) properties of the detector can be expressed in the form of the transmittance function
of the detector.

Property | is especially important from the experimental point of view, because in
this case the detector is considerably less dependent on various disturbances. The only
reason for the appearance of a coherent signal on the interferometer output can be a coherent
gravitational interaction with a frequency determined exactly by the circulation period
of photons in the waveguide.

The influence of the individual noise of the microwave receiver, losses of photons
and photon noise discussed above do not exhaust all the physical phenomena taking
place in the detector circuit. Under real experimental conditions the influence of the follow-
ing factors should also be expected:

1) instability of frequency of the photon source;

2) changes in dimensions of the detector waveguide caused by thermic influences;

3) waveguide’s mechanical vibrations;

4) thermic radiation through the waveguide walls;

5) gyroscopic effect caused by detector rotation in the waveguide plane;

6) quality of the waveguide walls.

Leaving the detailed consideration of each of the above points for individual study, we
will only add that all of the factors mentioned above can be made negligibly small, so
that finally the limit of sensitivity in the experiment is determined by the energy of receivers
individual noise.

7. Conclusions

We conclude that astrophysical sources of gravitational radiation could not be detected
by means of electromagnetic detectors of gravitational waves. This is mainly due to an
unsatisfactory spectral range of the detectors as limited by the present technique. However,
construction of these detectors would help in the investigation of laboratory gravitational
wave Sources.

Properties of an electromagnetic field as the gravitational radiation emitter are satis-
factorily described in literature. Microwave resonator sets filled by suitably synchronized
electromagnetic fields could be a source of gravitational radiation with strong directional
properties and power sufficient for detecting by the method described above. Dorosh-
kevich, Novikov and Polnaryov pointed out an interesting method of generating gravita-
tional radiation. They take two wave packets located on opposite sides of a toroidal wave-
guide, as a simulation of a relativistic “damb bell” which produces the synchrotron
radiation [7]. Flectromagnetic devices could be simple laboratory sources of coherent
and directional gravitational radiation in the meter wave range.

Due to similar toroidal electromagnetic field configuration in the detector described
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above, the “*dumb bell” set is suitable because of a possibility of using two identical wave-
guide devices for two points in the experiment. The gravitational radiation power emitted
by the waveguide of this mode is approximately
» Gh> wiN*n?

where N = 2wg/w,, g is the average frequency of the packets, n is the number of photons,
Aisthe angular width of the packets on the waveguide circumference. The emission frequency
is twice as big as the circulation frequency of the packets w, = 2w, and it is possible
to change it by changing the waveguide radius or its electrical parameters. Limitations
concerning n are the same as in the detector. Using the same waveguide of N = 10 and
n = 10%%, radiation power is of the order of Py ~ 10-'2 W which makes possible gravita-
tional communication over distance of 10 m by detecting fluxes S ~ 10-'* W/m?. Thus,
there is a possibility of testing the gravitational theory. This is associated, however, with
considerable technical difficulties. The experiment, for instance shown above, is not
easy, especially because of the big volume of microwave resonators that have to be cooled.
The principle of detection described above could be used also if one could use other kinds
of particles or quasiparticles to create a coherent beam in the toroidal waveguide. In each
case, the arising phase osciilation due to the beams and gravitational interaction could
be measured by interference of two particle beams which originate from two points separated
by 1/4 of a waveguide circumference. The arising energy of this interference is proportional
to the flux of gravitational radiation penetrating the waveguide plane.

However, it is possible to obtain such a propagation condition for these particles,
that the increase of the phase oscillation against {ime ¢ is much faster than a linear one.
An example of such a possibility could be a detector using the skin acoustical wave which
moves through an acoustical medium deformed by the interacting gravitational wave.
Due to the parametrical interaction, the amplitude of phase oscillation of phonons in-
creases like ¢ [8].

If similar effect existed in electrodynamics, the detector power would be proportional
to the fourth distribution moment P, ~ M,y, ~ o~2 which increases the detector cross-
-section by a factor of a—2. This effect occurs when photons are moving in a dispersive
medium (N > 1) and the group delay of two wave packets separated by 1/4 of the wave-
guide circumference increases with #2: therefore its phase deviation increases with ¢2 too.
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