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1t is shown that the common presentation of Einstein’s non-symmetric unified field the-
ory involves a misconception. The theory implies a different approach to physics than General
Relativity. The revised interpretation of its structure raises the problem of determination
of the metric tensor. A solution of this problem is proposed and it is shown that for a spheri-
cally symmetric field it restricts significantly the class of possible solutions of the field
equations.

{. Introduction

The purpose of this work is to review the foundations of Einstein’s non-symmetric
unified field theories (Refs [1-3] which have undergone considerable change since the
theories were first proposed. It has been shown previously (Ref. [4]) that there are only two
theories of this type represented respectively by the strong and weak field equations. The
status of the former, that is, its physical meaning is still uncertain and we shall concern
ourselves only with the latter. In any case, the difference between the two sets of field equa-
tions for a spherically symmetric field reduces (Ref. [5]) to the vanishing or otherwise,
of a constant of integration. Already while Einstein was developing his theory, logical
objections were raised which seemed to invalidate the possibility of its acceptance as a
unified model of the gravitational and electromagnetic fields. Several authors appeared to
show (Refs [6-8]) that the equations of motion of a test particle as derived from the field
equations did not contain, as they should if the particle were charged, any terms cor-
responding te-a Lorentz force. It seemed also (Ref. [9]) that a spherically symmetric point
charge, that is Coulomb law, could not exist within the context of the theory. These objec-
tions have now been eliminated since they arose out of an incorrect identification of the
electromagnetic field tensor. As early as 1957, it was shown by Treder (Ref. [10]) that
the Lorentz force would come out of the field equations if the electromagnetic potential
were a solution of the biharmonic equation. Treder, however, did not give any physical
explanation why one should be entitled to modify the potential in this way. Complete
resolution of this problem as well as of the Tiwari-Pant paradox was obtained later
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(Refs [11, 12]). The outcome of the work of Russell and of the present author is that, not-
withstanding the still elusive empirical confirmation, the nonsymmetric unified field theory
is again a possible extension of General Relativity encompassing gravitation and electro-
magnetism. There are also strong philosophical reasons (Ref. {13]) to suspect that it is valid.
It is therefore important to be quite clear as to the logical structure of the theory, as
to the assumptions and principles laid down, and as to the relationship between the model
and the physical world it purports to describe. These turn out to be quite different to the
fundamental principles of General Relativity. The difference, in fact, leads to a problem
solution of which constitutes the main mathematical part of this work. This is construction
of the metric within the non-symmetric theory.As we shall see, the solution of the problem
leads to a restriction on the class of possible solutions of the field equations themselves.

2. Logical structure of the theory

The field equations we are considering are the weak field equations of Einstein and
Straus (Ref. [2]), or in their notation adopted throughout

M

Euv,a = O# Ruv = Oa Ruv,}, = 09 r,= Oa (l)
- ~

where
R, = —I%, .+,

g o G ¢
I uv.o uﬂ.v+rygr(n'_—rpvr

ag®
1s the generalized Ricci tensor, I‘ﬁv, the non-symmetric affine connection and g,,, *‘The non-
-symmetric generalized metric “’tensor. The latter is a misnomer and for reasons set out
below I prefer to call it the fundamental tensor of the unified field theory. In order to
appreciate the meaning of the non-symmetric generalization we must recall the basic assump-
tion of General Relativity. It is postulated there that a Riemannian V, shall be the model
of the world, its curvature representing gravitational properties of matter. In a V., g,
is the metric tensor and the affine connection is of course, given by the usual Christoffel
brackets. The ten components of g,,, that is the metric properties of space and, by hypo-
thesis, of gravity are determined by the field equation. Selection of gravitation as the only
“geometrised” field is the essence of the Principle of Equivalence.

The latter is discarded in the unified field theory in favour of the Principle of Hermitian
or Transposition Invariance which, as Einstein pointed out, is the only means of restricting
to manageable proportions, the freedom of choice of possible field equations. The Prin-
ciple has an immediate physical interpretation as an expression of charge conjugation in-
variance but unlike the Principle of Equivalence it does not inform us about the metric
properties of the space-time. As is well known the last of the equations (1) ensure that
the weak field equations are transposition invariant.

The consequence of this replacement of equivalence, and this is not widely realised,
is that the unified field theory splits into two parts which we may call respectively physics
and geometry. The only a priori geometrical quantities are the sixty four components I'%,
of the affine connection in terms of which the last three of the equations (1) are written
down. The affine connection tells us how to compare vectors at different points of the
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space-time and determines both the Riemann-Christoffel curvature tensor and, of course,
its contractions and therefore the form of these equations.

The first part, “physics”, is contained in the sixteen components g,, of the funda-
mental tensor. The fact that in a fourdimensional manifold there are only sixteen of them
restricts a priori the number of physical fields which can be unified. Indeed, discovery of
a macroscopic, that is not subject to quantum mechanical concepts, field other than
gravitation and elect\romagnetism, would upset Einstein’s theory and it would almost
certainly imply an increase in the dimensionality of the manifold. Now, as in General
Relativity, Mme Tonnelat has shown (Ref. [14]) that under not very restrictive conditions
(g(g—2) # 0, g = det (g,,)), the first of equations (1) determines I';, uniquely in terms of
g, and its first derivatives. This, however, does not assign to the physical g,, a geometrical
meaning because there is no geometrical meaning yet to be assigned to it.

A quasi-geometrisation of physics, or rather of macrophysics of gravitation and electro-
magnetism, which after all is the goal of the theory, is achieved only after substitution of
Tonnelat solution for Ff,v into the remaining field equation and their subsequent solution
under some preassigned symmetry conditions. Even then it produces only the affine structure
of the now physical world. Whatever the interpretation of g,, (and it certainly cannot be the

electromagnetic field tensor, Refs [11, 12]), to postulate that the symmetric part g,, of the

fundamental tensor is the metric of the space-time is equivalent to making an ad hoc
hypothesis foreign to the spirit of the theory. I claim that even though frequently made,
this hypothesis or any of its variants (e. g., Refs [I5, 16]) are unwarranted.

As we see, the above considerations imply that Einstein’s non-symmetric theory is
affine in the sense that it only permits an affine geometrical structure to the hypothetical
model of the world. On the other hand, it is very different from Schrédinger’s ““Purely
Affine Theory™ (Ref. [16]) in spite of identical notation responsible for considerable confu-
sion between them. If the latter is to be considered then, strictly speaking, all sixty four Fﬁv’s
should be assigned physical meaning. This at present is hard to visualise. Einstein’s theory
saves the situation by having only sixteen functions to be identified with physically mean-
ingful quantities.

However, it leaves unanswered the question of what are the metrical properties of the
world. It is difficult to think of macrophysics without reference to how distances between
points are to be measured especially in view of the success of basically metrised General
Relativity. In the sequel therefore, we shall attempt to formulate the conditions which
should lead to an unequivocal determination of the metric, if one wishes to say so, of the
background Riemannian space of unified.field structure. We shall also carry out such
determination in the spherically symmetric, static case.

3. Definition of the metric

The hypothesis that g, is the metric as well as the proposals of Wyman (Ref. [15],
with the metric explicitly dependent on g,,) and of Schrédinger (Ref. [16]) all satisfy the
following conditions. If the metric tensor is denoted by a,, which is non-singular (¢ = det
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a,, # 0) then
uy = auv(g;:!v g“vv) = avﬂ’

and
4 8urr 0) = - ()

We can also require a,, to depend also on r“, in such a way that when 8w =0=T%

uy
it reduces to the metric of general relativistic V,. This preserves complete generality and
in either form we can adopt conditions (2) as necessary for any second rank tensor which
is to be regarded as the metric tensor of the physical space-time.

We now seek the most general expression which would enable us to obtain a,,,, possibly
as a result of calculation, and which would ensure that conditions (2) are satisfied. Now,
according to the considerations of the preceding section the only geometrical quantities

in the theory are the affine components I',,, of which the symmetric I, constitute a connec-

ny

uv?
tion while, of course, I’ ,’“, is a tensor. One would expect that the essentlally geometrical

a,’s should be determined in terms of them. Apart from deliberate complexifications
(which would probably be unsolvable in any case) the simplest (and as Einstein clearly
understood, simplicity must be retained as a quide in constructing a theory which does

not arise from empirical necessity) assumption we can make is that a,, should be given by

A )' ,
% a a(anv.u—*_aun.v"auv.a) = {ll\’} = f,“ (3)
or, equivalently, by
uv i F{rlaaw r(;):a;m = 0. (4)

Equations (4) must be regarded as differential equations for a,,. There are forty equations
(4) for the ten functions «,,. However, the integrability conditions

ag:v.b{ = auv.xl (5)

of equations (4) are easily seen to be equivalent to

g o a 0 o o 0 ¢ o o
(ru/ N r;u\ A ru:\rn,x ru/r:n\)am = (r\u 2 \/ K r rw\_’_rurg;)u;m-

or
,u)k av = R(VTKA um (6)

where R7,. is the Riemann-Christoffel tensor constructed with the symmetric part I",,v of

i
the affine connection. But in view of the assumption (3), it is also the Riemann-Christoffel
tensor of the background Riemannian space in which a,, is the metric tensor used for
raising and lowering of tensor indices. Hence, equation (6) is equivalent to the well known
symmetry relation of the Riemann-Christoffel tensor

Rvui.x = Ru\'x}.‘ (7)
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Since this is satisfied, it follows that the differential equations (4) are always formally
integrable.
Moreover, equations

o« a
Buva = guv,l——ru}.gav—rlvgua =0

i
reduce, of course, to the corresponding equations defining the Christoffel brackets when
skew symmetric parts of g,, and of I, vanish. We then get

N
{M‘, I ®

which, apart from an irrelevant constant factor, imply that a,(g,,, 0) = g,,, as required

by our defining conditions (2). We now proceed to determine the metric tensor for
a spherically symmetric field.

4. Reduction of equations determining the metric

It was shown by Papapetrou (Ref. [17]) that the general form of a spherically symme-
tric, time independent fundamental tensor is

g = —% g2 = —f =giycosec’d, gi=o,
g3 = —gy = fsinl, g = —gs =w, ®
where %, f3, 0, fand w are functions of x' = r only, and the first three are strictly positive.
Then also
w? 2 g2y a2
0<—g=aa(l—w~>(lf + %) sin” 6. (10)
oo
Following Vanstone (Ref. [5]) we write
w? R
U=1—- —>0, oF=f2+p=¢",
oo
ot , o B
yv=0U, x=>, A =--, tanB= -, (i)
o 0 f

Dashes will throughout denote differentiation with respect to ». Mme Tonnelat showed
{Ref. [14]) that in this case, the non-vanishing components of the affine connection are

’

L ® 1 t 2 L. , 1 o o\
I'yy=-—. T;,=T35c08ec”0=—(fB'—BA"), @44 = —(lnyU).
20 2a 2a
)/
Ify= —sin0eos0, Ty =cotf, IHh=Tl=}ta =42 (12)
. wB y'
F§4=—F§4sm20=—5-—sm(). 1"“1‘4:%!—:—,
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’

i ! ’ -4t . 2 3 202 B H
r:, = 2~(BB +fA)sin0, I3 =1T7,sin*0 = — *2—51110,
~ a v ~

1 2 3 w ¢ '
Pig= —2I3, = =23, = —~<= —(In U)>
. v oo 2w

Vanishing of I',, or equivalently of (,/—gg"’),, immediately gives (Ref. [5])
¥ o= vt 13)
x5 _k2+92’ _k2+92’ (

where £ is a real constant of integration; equation (13) is one integral of the field equa-
tions (I1). We need (11) and (12) in the sequel.

For the sake of completeness we shall now write out equations (4) in full in the case
corresponding to Tonnelat’s solution (12). The coordinate system is x* = (x!, x2, x3, x%)
=(r, 0, ¢, 1). Thus

1 . _ 2 .
dgy, = 2I4a,,; arrz2 = 2I75a4,;
3 . _ -4 .
ap 3 = 2l1;a,;: pyq = 20404
— (' 4T . — 2 i .
dizq =Ty +T12)a,25  ays, = Fian+15a,;
_ 73 3T _ 4 3 )
Aips = Isar3+ 133030 a4 = I'14a,+T5,a,5;
=(I},+TI3 : =TI} I33a,5;
iz = s +T3)a030 ag, = Iaays+133a,5;
) 3 1 2 . 4 2 .
dy33 = Taa33+ 1330, + 1530, ay34 = Tiass+T3,a,,;

1 4 ) 2 3 )
(g = (I +HT a0 dyg, = Fiaaya+1T54a45,

3 -2 . _ 4 1 .
raz = Iisas0+T5,a,;; Araq = 14040+ 140,y

-2 . _ 1 .
dazq = 250, Ua2.2 = 213505,
1 =2I3.a,,: « = 2I3,a,4;
23 = 23423, 224 = 24433,
130 = 20250555 dysn = Thya s+ T35a,s: &
a3y = 12423, Uz = 1 55dy3 2349235 )

3 1 2 . 3 2 .
33 = I33a33+ 13300+ T5305,5  dy34 = F24033+F34a22,
2 4 . o 3 .
dagq = (U124 T10)a2: Gy, = Iiya,4+7 53,0553
-3 2 . -3 15 .
Aaa,3 = 1 33034+1 340575 Ay a = Lo4a3,+1 40,5,

3 . _ 3 .
a3z, = 2I'{3a;55; d3sn = 233053,
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= 2I} +2I%5a,,: = 23 a,5;
a3z 3 = 33413 334237 d334 = 344235
3 4 . 3 3 .
Aagy = (F13+174)a300  a3a: = [a3a30+ 1544053
=T} ri ria,,; = I? [340,5;
A3g3 = D33a14+ 133054+ 1 34053, Gza4 = 134054+1 44043,
— 4 . _ 3 R
Aaay = 2I140447  Qaa = 254054
) 2 ) Al
d4a.3 = 2r34a24s dag.4 = 2r44a‘4.

Resolution of these equations in general is tedious and not very profitable especialily since
they will have to be investigated in full in the generalised non-symmetric theory based on
the field equations

R;i\' = 0' R = -;; (r,u.v“rv.,u)’
gu v :i._é' (g_uvr).%'g,u,irv) = 0~ (14)
y -

which is beyond the scope of the present work. Accordingly, we shall confine ourselves to
the case when a,, is diagonal and its components depend on r and 6 only.
The equations (4") then immediately give

Ay, = Ao, dy, = a3;€0sec’ O = byo, dgy = —, (15)
Yo

where ag, bo and y, are non-zero constants together with the algebraic conditions

2 1 3 1
a0+ 30, =0, Iza33+T33a, =0,

4 1
I'isa44+T 3.0, =0

and
r3, =0, (16)

the remaining equations reducing to identities.

The second of equations (16) is automatically satisfied while the others become respec-
tively

boo” +aq (fB'—ﬁ 0—) =0, y tagyeo(lnylU) =0, wB =0. (17)
\ o

The solution of these equations represents a restriction on the general solution of the field
equations (obtained by Vanstone) required by our hypothesis that a,, determined by
equations (4) should be the metric of the background Riemannian space. We have asserted
that it is through the latter that measurement of distance between points of the space-time
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manifold becomes possible in the non-symmetric theory. The second of equations (17)
can be integrated at once since ¢ = y/U, and gives

a
y=0U =y (1 + OJO> (18)

where y, is yet another (positive) constant of integration. The profligacy of integration
constants can clearly be reduced but it is advantageous to retain them at this stage. Also,
the last of equations (17) requires that either w = O or f o¢ f (B’ = 0, or both w, B = 0).
We must now check whether (18), and the result of integrating the first of equations (17)
under these conditions are compatible with Vanstone’s general solution of the weak field
equations and what further restrictions they imply.

3. Vanstone's solution

Vanstone’s solution of equations (1), although general, is expressed (Ref. [5]) in a form
inconvenient for our purpose. Let us therefore consider it again. The field equations which
are not identically satisfied are

Rll = O, R22 = 0, R44 = 0, R23 = ¢ Sin 0, (19)

where ¢ is a real constant. 0 dependence is not significant, so let us write I'} , for I'} , cosec 0.
Then the R,, and R,; equations become respectively

(F35) +3(Inay) Ty +B'Th5+1 = 0,
(I'33) ++(nay)Ty;—BT+c =0, 20)

These may be written as equations in 4 and B:

iy x/ y!/ , 2 i
B/t (- ) B+~ (fep) =0,
x y x
and
. xl ‘)7// , 2
A"+ — + — )4+ — (cf—h) = 0. 2n
X y X

Similarly, the R,; and R,, equations give
2A//_A/2+B12_2__
and

=L, (22)



581

where we have put 4> instead of Vanstone’s 1. We shall consider only the case A2 # 0
unless otherwise dictated by the requirements of Section 4. It is now readily seen that if
we write ¢ = tang, y = ¢, D = s+ A4 and C = B—¢, and regard s instead of r as the
independent variable, the field equations to be solved become

d*C d*D

e +pePcos C =0 = —- —pePsin C, (23)
([s" ([S-

2
where p = -—-secé, and
A

’dzD (a’D)2 dC\? | 24)
Tdst ds ds ’ (2
Letting now Z = C+iD, equations (23) become as in Vanstone’s discussion, a single
complex equation

d*z —iz

— tpe =0, (25)

ds

in which however, s and y are real. Writing further v = 2iy, the general solution becomes

v —
exp (iZ) = S (1—cos \/{ (5~50)), (26)
<Go
where {, ans s, are complex constants of integration. Let now \fo = p+iq, So \/Z;
= s,+is,, where p, ¢, 5;, s, are real, and
Ay o= 2P4 =y, 8ind, A, = K" =a7) = }; COS &
10 U S N B 1 3 LB T T S i » *
(p*+4°) (p*+q*)°
1—cos %, cosh y,
1= PS=Si,  f2=45—5;, P=- . @7
sin y, sinh ¥,
Then we obtain easily the real form of Vanstone’s solution
» 1
e ¥ = — = y,(cosh y,—cos xy),
yo
f—cf &—tan d
f+cp i+ @tand

tan C = (28)

from which (with the aid of the second of equations (22)) the components of g,, can be
calculated directly.

We still have to satisfy equation (24). An elementary calculation using (27) and (28)
shows that it reduces to an identity providing

p2 = qz— 1. (29)

We can now proceed to discuss the several cases of the solution of the metric equation 4).
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6. B =0, w#0

Because of restrictions imposed in Section 4, it is convenient to revert to equations
(20) and (22). We have, if £ # 0, f oc f, and from the first"of equations (17)

b
B="0 (30)
do
Then
By’ 2
F;z=“’_'“~ f%sz%k0~, (31)
200 v e
where
b2
ko =1= = (f= tkoo)
dg

From (30) we have two cases.
(@) £ # 0 implies k, # 0 and the field equations become

Bo'\ o B B
<‘2a9> + 5 (In (o)) <2a0> -1 =0,

o'\ 0 ¢
(——) +3(nay) = +2— =0,
o o ko

24— A+ A (ln f) ~ 0. (32)
y

The last of these equations gives

=2 a constant, (33)

whence, because of a = p?y!2/A%y, y' = +1p'[ke*'?, which is incompatible with (18).
Therefore either A = 0 or f = 0. If A = 0, y = constant and disappears from equations
(32), but from the second of equations (17) o also is a constant, and this is incompatible
with the first of equations (32). Hence we conclude that the condition B’ = 0 implies
S =0 (so that in particular, we cannot have B’ = w = 0 or the theory collapses into
General Relativity).

(if) f = 0. This case was solved by Papapetrou but without assuming initially that B is
constant as well (= n/2). The second of equations (32) now implies that

c=0, 39
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so that we revert to strong field equations (R,, = 0). We can now put, without loss of
generality,

y
ayy = —®, Gy = —p, =9, a;,=-—,
Yo
together with, from equation (33),
C_ A s, - 23
y==0° W' or y =y, =AMy = P (35)

The only field equation we must still satisfy is

o'\, , , 0
- — EX¢! - =0
< 2a>+2(nay) < 2a)+1 ]

’

. @ 2
or, since — = K2 -,
X 0

’ 12\ 7 2
(Q—y) +1 <1n 9—) S
0 e\ o) «

This is identical with (35) if y; = 4/k2. When o = r2, we obtain Papapetrou’s solution
) Aok™\ 7! 4 1 Aok 1+ k?
o={1-——1 , =(1- —1,
4r ’ ©? 4r ) rt

B=r* w=+—. (36)

When w is put equal to zero, the equations I, = 0 are identically satisfied and Ton-
nelat’s solution gives

’

szlq

7

g
4 1 1 1
Iy =z Iia=7

Thus, from (4')
Ay = Gty Gy = bop  and a4, = 0,0, 3D
oo being a new constant. Also, the algebraic conditions (17) become
3 boo’ +agal;, = 0, (38)

whence

!

F§z=-—5——-, (39)
ag o
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and
3 0'(6p+ag) = 0. (40)

Therefore, either ¢’ = 0 or gy = —ag.
Now if ¢ is a constant, a lengthy but elementary calculation shows that the field equa-
tions (20) are incompatible with the first of the equations (22). Hence

oo = —ao, @1)

and we can put without loss of generality a, = bo(= —1). We then have I'}, = — o/2x
and recalling the definition (11) we easily find

(
SinB =1~ =, cos B = & 2@_1_—.1,
Qo Qo [ 0
0’
B = - ——= . ﬁ:g(]_£>’
L 0
o\/2@—] 0
¢
and
My=—-2

20:_\/2-9—0 -1
7]

<

where g, is a constant. We also have y = g, so that relations (22) give

(m ’;”) = 24'—(In ao) “2)
and
24" 4+ A"+ B2 —(In ac) 4’ = 0. 43)
The equations (17) become
A r 12
4 , @ e
-]+ (lnao)y — + ——— -2 =0, (44)
(“ ) «  200—0)
and
QI 1 QI 012
————\ +3(nao) - = +2¢ =0, 45)
oc\/2@-—1 oc\/?,gg—l ag\/2@—-
e e 4
with
A.Z
012 = oG (46)
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Equation (42) can be integrated at once to give

.2

o

6= — 47)
1o(2¢0—0)
u being the constant of integration. Let vo, = — A/ /. Then, substituting (47) into (46)
and integrating we find that
()12
% = - —, (48)
(200~ 0) (w+ : \/ 2% - 1)
0
and
Qo
a:a)+v\/2~——-—1, (49)
: 0

\

where  is another constant. Substituting these results into the remaining equations (44)
and (45) we find after a straight forward reduction that they are identically satisfied pro-
viding

jwoe—2 = 0, (50)
and
uvoo—2¢ = 0. 5D
o of course, remains an undetermined function of r, the radial coordinate. If we require
that a,, = —r2, that is p = r2, then the corresponding solution becomes
2
2 2\
- \/rf, ) s ar* [r2 ) 5
c=wl|{l+c_ [= —11, = = ~1,
7‘2 r% 7'2 ( )

where we put 2go = r3. Clearly, for real components g,, we must have

r<rg. (53)

8. Discussion

It may seem curious that the fundamental difference between Einstein’s non-symmetric
theory and General Relativity, as described in the first two sections of this work, does not
appear to have been hitherto emphasised, or indeed, noticed. Yet, an explanation of
this is not hard to find. It is partly due to the fact that in General Relativity one decides
a priori, on the particular interpretation of geometry (equivalence, or in other words
gravitation) while “physics” and geometry, that is the components g,, of the symmetric
metric tensor, are simultaneously determined by the field equations. The second reason
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is the undue haste with which one wants to revert to a theory known to be successful
(General Relativity) and, in the plethora of proposals for a unified field which have been
suggested, to recover Maxwell’s equations in a virtually unammended form. Einstein alone
seemed to see that this may not be possible. In fact, if the new theory is to be empirically
verifiable, it may not be desirable. Finally from the mathematical point of view, the choice
of a metric (function or relation) is free within relatively weak restrictions (triangle ine-
quality, etc.). Hence it is difficult to realise that, as far as physics is concerned, it may be
necessary to postulate not just the overall structure of geometry (viz. Riemannian space of
General Relativity) but a law (such as is contained in equation (4)) from which the form
of the metric can be found.

We have seen that in the non-symmetric unified field theory there is an initial bifurca-
tion of physics and geometry. The reason for this in the replacement of the Principle of
Equivalence which forced the identification of the gravitational field with the Riemannian
metric by the much weaker Hermitian or Transposition Invariance. The only thing assumed
a priori is the mathematical representation of the physical fields by the sixteen components
of the non-symmetric fundamental tensor. And geometry is purely affine in the sense that
only the nonsymmetric affine connection appears at the outset. Both g,, = g,,+2,, and

ri, =ri+r fw are determined by the field equations. In this sense the latter constitute

a reahsatmn of the program of geometrisation of physics as distinct from a geometrisation
achieved through an initial hypothesis as in General Relativity. If now we agree that the
geometry of a physical world should be metric, it follows that the question of which quan-
tity should be regarded as the appropriate metric tensor appears wide open.

We have proposed in the present work a solution of this problem. At first sight it may
seem that the proposal is just as ad hoc as the postulate that g,, is the metric, is clearly

too strong since one would expect the tetric properties of the space-time of the unified
field theory to depend explicitly on the non-symmetric fields. There is nothing in the
postulates of the theory to demand this role for g,,. The metrics of Schrédinger and of

Wyman satisfy these requirements but they are both very artificial. Ultimately, of course,
only an empirical study of the metric properties of the space-time, say in the vicinity of
a strong electric charge can decide which choice is right. In the absense of data however
our solution has twofold superiority over earlier proposals.

Its first merit is that it allows us to limit the number of possible solutions of the field
equations. Vaustone’s solution (Section 5) is perfectly general but because of this it is
extremely difficult to interpret physically which must be the aim of the theory. As we
have seen, the result of requiring equations (4) to hold is that only solutions (36) and (52)
appear to be permissible In particular, we cannot have a static, spherically symmetric
solution for which

w#0, [f#0 (54)

simultaneously. But we can go further. Both the solutions (36) and (52) result from the
choice

Gz = —r2, (55)
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since otherwise they involve, as does Vanstone’s general solution, an arbitrary function of
r. However, this is not a severe restriction. It is in fact, nothing else than a definition of
the radial coordinate. Tt is difficult to see how one can obtain a meaningful theory without
such a definition. The choice (55) means that the “metric”’ contains an Euclidean 2-sphere.
But an Euclidean sphere is a Riemannian space V, (with constant, positive curvature).
What is more important is whether solutions (36) and (52) have themselves any physical
meaning. The former clearly does if w = f, is regarded as the electromagnetic field but

this interpretation is ruled out by the theo}ems on the equations of motion (Klotz and
Russell, Ref. [12]). On the other hand, the identification (Ref. [11])

.fnv = *gaﬂg ;va saff (56)

4 -

(or, as I prefer, f,, = *g“"guv;a/,) of the electromagnetic field tensor leads to even greater
00
difficulties. For example, the highest power of r in the expression for fi, in the Papapetrou

case (36) is —4:
4k rok? 4l (r,
Jia=—7l1+ — )+ —5——-1}. (57)
KF r Kro \ r

Far from being fatal, this difficulty of interpretation enables us to resolve another perplex-
ing question in the foundations of the unified field theory. Gregory and the present
author have recently (Refs [18, 19]) raised the question of uniqueness of the interpretation
(56). They have shown that to the order of approximation required to derive the Lorentz
force one can also have

S = Ry (58)

We can now conclude from (57) that this is the more appropriate identification of the
electromagnetic field. 1f it is adopted then equations (19) immediately imply

Jaz o172, (59

so that Coulomb law appears to hold absolutely in the unified field theory.
In addition, we also get
Sia = Rig = =Tia+T [ T+ 20505+ T3+ 200,05,—T 1415,
In the case when w = 0 this component of the electromagnetic field tensor vanishes identi-
cally. However, when f = 0 instead, it becomes
4kr
-—. (60)
Kr
This looks like an octupole field though it is perhaps too early in the theory to conclude
this firmly. If this solution were rejected as physically meaningless, it would be necessary
to assert that spherically symmetric (at any rate) magnetic monopoles cannot exist. The
result would be very satisfying as far as unified field theory is concerned.
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Work is at present being carried out to extend the results so far obtained to the case
of cylindrical symmetry.

We may add that the case w £ 0, f # 0 can be excluded as physically meaningful
on the grounds that since it implies ¢ = 0, and therefore a solution of strong field equa-
tions, it does not give a Lorentz force in the equations of motion (Ref. [12]).
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