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CONSERVATION LAWS AND IDENTITIES IN THE
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The conservation laws and Bianchi-type identities are derived for the generalised,
non-symmetric unified field theory. Also four identities reducing to the equation of geodesic
deviation in the symmetrised case are derived.

1. Introduction

In a previous article (Ref. [1]) it was proposed that the symmetric metric tensor a,,
in the non-symmetric unified field theory should be determined by the equations

am’l—l'%aﬂ——l*éaw =0, 6))

where Fﬁv are the symmetric components of the affine connection. It was shown that this

proposal severely restricts the range of solutions possible in the theory and that it virtually
settles the question of identification of the electromagnetic field tensor. It should be
emphasized that the identification

fuv = Ruy\" (2)

of the latter, removes all dispute as to whether strong or weak field equations should be
adopted. Since the former require

Ruv = 07 (3)

they are impossible if we wish to have an electromagnetic field at all.

We mean by the metric tensor the quantity required to measure distance between
distinct points of the manifold in the presence of gravitational and electromagnetic fields.
It is not necessary to raise and lower tensor indices exclusively with its help since any sym-
metric, non-singular tensor (of rank 2) will do for this purpose.
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If the identification (2) is admitted then it appears that the only physically sensible
solution of the weak field equations in the spherically symmetric case, and with a,, diago-
nalised, is when the skew symmetric part g,, of the fundamental tensor reduces to just one

component, 823 (that is, when w = 814 = 0). In order to throw more light on the question
whether 81a or 823 should be made to vanish (by (1) they cannot both be non-zero), we

shall consider now the conservation laws of the theory. It will be shown that this restricts
even further the freedom of choice of the field theory (the version of the field equations,
since with the elimination of the strong field equations, all possible theories retaining the
Principle of Hermitian, or Transposition Invariance are known to be equivalent, Ref. [2]).
These questions are, of course, vital to the physical interpretation of the theory and therefore
also to its eventual, experimental confirmation.

2. Conservation laws

Let us consider the most general (Transposition Invariant) non-symmetric field
theory as outlined by Russell and the present author (Ref. [2]). U f;v is called an Hermitian

variable if, when the affine connection F,’}v is expressed in terms of it, the Ricci tensor
Ry = —Taoet T+ le,—TIe, 4)

u

automatically becomes Transposition Invariant with respect to U/,. The most general.
Hermitian U, is given by

Ih = Ul +(22, +1)of U" — % 82U, ~ By + 18U, + (3o + 20, + 1)SAU (5)

where
=U :v“’ (6)

and o, and o, are numerical parameters determining a particular ‘“version” of the theory.
Russell and the present author show that a variation in «, leads to the conservation law

e~T, = 0. (7
Since the generalised theory requires that
gv, =0,
it follows that
gV, —r,,) =0.
Now by the identification (2) this is equivalent to
" = 0. @)

In view of the conclusion of the article cited (Ref. [1]), however, such a conservation
relation is impossible. Thus we deduce that «, cannot be varied and therefore, unless it is
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put equal to zero (as for example, in the Einstein-Kaufman theory), it must be
regarded as a universal constant. Its precise nature cannot be at present determined.
From (5) we easily deduce the transformation law of U, in the form

éxtoaxt ox? éx*t o 9ix®
U/A L a R -
TNt ox™ ax” P ax® axtox”
| ps éx’ @t L ox'7 X ©
+Z | POl — Toan LR R e
VXt oxext P ox® axoox’
where
P= —927°—6x,0,—2, —7,+1,
0 = —(9x,2 + 60,00, +6x, +a,+ 1),
27" = (5, 4+ %) (92, + 62, +2) # 0. (10)

Following the method of Weyl and Einstein we consider an infinitesimal co-ordinate trans-
formation

xr/l — x}.+8éﬂ.(x)’ 82 < e, (11)

which actually represents a mapping between neighbouring regions of the manifold.
Because of this, we get

(jL’;v = IZvCEA"x_ L,’;‘vi’.“ - Lv;/mg.:j\'_ i.;".m‘
- Q(Péf'.éd‘;m’ + Qéiéo,va) - L];}v,aéa> (12)
ogt = g7 +¢"°C 6" -6 <0, (13)

to the first order in &. The field equations of the theory are obtained from the (Transposi-
tion Invariant) “Action Principle”

0§ LdQ = [ (R, 0"+ 440U )dQ = 0, (14)
where the ‘‘Lagrangian”
2 = §"R,. (15)

and the Ricci tensor R,, is expressed in terms of U}, (e. g. equation (9) of Ref. [2]).
Inserting expressions (12) and (13) into (14) we immediately derive equations analogous
to the Branchi identities of General Relativity:

(RiuG™ Ry + ¥ 50 =V PUS = N 8V
+ N A GPN T, +Z0AN ) — Ry, 06"

+ AU, =0, (16)
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These ensure freedom of choice of the co-ordinate system. We can also derive a conserva-
tion law as follows. First, without integration by parts, we obtain

0F = (—g""oU,, +(14+3a,) (§"°6U,,+6°"0U,,) +42,60U )) ,. a7n

Hence, if we specialise transformation (11) by making &* independent of the co-ordinates,
and require

0L =0, (18)
then
., =0, (19)
where
T = ¢ Ul =~ (14 30) (g™ ULy 46U, ) = 42067 U, (20)
When «, = —4, 2, = 0, this reduces to the Einstein-Kaufman expression
T = g% U, (20

Whether €% can be regarded as energy-momentum is questionable for several reasons.
First, and perhaps most important, is that whatever symmetric tensor we use to raise/lower
the indices, $** is not symmetric in general (and its symmetric part is not conserved on
its own). Tt is uncertain at present, what quantity of the form

e nve

o T = =T (22)

(skew in the last pair of indices so that it may be identically “conserved”) should be added
to it to overcome thigs difficulty. Perhaps, once a suitable 7 is found, we shall automatically
solve the problem (pointed out in Ref. [2]) that € is a tensor density only for linear
transformations of co-ordinates.

Furthermore, both the “energy-momentum’ tensor of Einstein and Kaufman (Ref. [3])
and our &% are such that for a spherically symmetric, static solution of the field equa-
tions,

34 =0, (23)

unless w = 0. This is strange since we associate this component with energy density.
Einstein interprets the above result as implying that a stationary, non-singular field cannot
represent a non-zero mass. It seems however, premature to conclude anything until the
former questions are resolved. In any case, it is not quite clear what is meant by an energy-
-momentum tensor in a theory which admits only two physical fields (or, rather, applies
only to them). Both gravitational and electromagnetism, the two macroscopic fields repre-
sented by the fundamental tensor g,,, are geometrised by our interpretation of the field
equations (Ref. [1]). Hence solutions of the latter correspond to the solutions of the field
equations of General Relativity in empty space regions. And these certainly do not suffer
from lack of physical interpretation because their T3 = 0.
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Finally, let us rewrite expression (20) in terms of the affine connection I, of the
Einstein-Straus theory:

Pl =Tu+30; [,=0, (24)
with I';, given by (5). A straightforward calculation gives

¢ af a
;s)::g F: _g”'rzﬂw
= gaﬂf:ﬁ, gmraﬁ,v % g”\f‘[“.v’ (25)

but, of course, I', cannot be eliminated.

3. “Geodesic deviation”

We conclude this note by recording certain identities which reduce to the equation
of geodesic deviation in the general relativistic case. In the generalised structure of the
unified field theory it is uncertain as to what is meant by a geodesic, or rather, of which
space-time is a particular curve a geodesic. Hence it would be incorrect to speak of ge-
odesic deviation of the unified field theory. Nevertheless the formulae are very suggestive
and may throw some light on what should be interpreted as force in the unified field.

We start as usual with a two parameter family of surfaces given by

XM= x*(u, v), (26)
and define two vectors
. oxf . oxf
o= = = e 27
Let us also define the operators
L an" y - on" y
D,n ——;—+F Gn't, Do = + LG n°t?, (28)
and the vector
ot ot
0" = ™ + e = = +Lyptth. {29)

It is convenient to define two further operators:

u M
vior="2 Lo, Vo~ C o, (30
or ov
Then, since
at# ol 12
o _ ot (31)
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a straightforward calculation shows that

2 ol 4 A€
+ = é (én én
Din* = — (—— +I"‘,n“t”> +I’§,‘,,< — +F;‘§an’l") r,

cu \ Cu ou
= VS O0"+ Rl ntt", (32)
the Riemann-Christoffel tensor being
ape = —Dagot Thopt L5, Thg—T ol (33)

Clearly only the symmetric part Ry, (in x and B) of the latter enters into this and the
succeeding formulae.
In exactly the same way we get

4+ + u u
D 3”1‘ = V;Qu+2r56D'7at”+[R:ﬂo+[: 1:{i+‘r:ﬁ;z]n¢zatﬁs (34)
v + +4
(+-)2 B u u
Dan* =V Q"+ [Rby + 15 o5 011, (35)
+ 4 +7

and
- ‘ +
Din* = V] Q"+ 2repnr
+ [Rhogo+ 204,10, + 208, T4 011, (36)
The four expressions (32), (34), (35) and (36) differ from each other, as indeed they must,
by a tensor. It is curious how, in our notation, the first of these turns out to be the simplest.

It is difficult at the present stage of the theory to give an exact physical interpretation to
these results. They leave feeling that there should be some meaning to these formulae.
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