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It is shown that the non-symmetric unified field theory of Einstein leads to a unique
cosmological model which accounts well for the observed expansion of the universe. It is
suggested that the theory may be empirically tested on the basis of its associated cosmology.

1. Introduction

It was shown in a previous article (Ref. [1]) that the metric tensor a,, of the non-
-symmetric unified field theory (e. g. Ref. [2]) can be obtained by equating Christoffel
brackets formed from a,, to the symmetric part I’ ﬁv of the affine connection and regarding
these equations as differential equations for the metric. As the result of this process the
number of possible solutions of the field equations in the case of spherical symmetry is
restricted to two of which only one appears to have physical meaning. Then, identifying
the electromagnetic field tensor f,, with the skew symmetric part R,, of the generalised
Ricci tensor, an identification which is virtually forced by the form “of the solution, the

electrostatic Coulomb law is seen to hold without modification. The corresponding,
unique metric is

2 ar?
ds* = of1+c [ —1)dr-
r r? re
g r
—r*(d0* +sin® 0dg?), )
where w, ¢ and r, are constants, the dimensionless ¢ being related by the nature of the

theory to the numerical strength of the electric charge. It is evident from (1) that the solu-
tion appears to be valid for

r < |rol @
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only. Leaving for a moment a possible interpretation of this result, we should note that
the apparent breakdown of the solution at r = iry! is due exclusively to the particular
choice of the radial co-ordinate. We shall show first that an alternative choice removes
the singularity and that it can be made in such a way that the metric (1) approximates
naturally to the Schwarzschild metric.

2. Schwarzschild co-ordinates

Let f be a function of r and let us write the relation (1) in the form

2
/—.g — 1) dr?

i,2= -2 2 1 .
ds f a)f(—%c\”

2dr? )
~'-~~—r—f‘~~~ e - ——fzrde2 R 3)

B r? "2
<1».E tte [-5 -1
Yo I

where dQ? = df? + sin? 0d$>. Let g be a function of a new radial co-ordinate, say o,

such that
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With the new radial co-ordinate ¢, the metric relation (1) becomes
2 2
r O Ccr
ds* = —2—0—2 1+ “2> 1+ —2) de?
roto o 0

— e —gzlej , (7)
4 Cry
(502
fo 0
where \/'(Bt = 1. It clearly tends to the classical, Schwarzchild solution

2m
ds? = ydi*—y " 'do® — 0%dQ?, = 1-— — (8)

if we put

cro = —2m and 02 <ryl. 9

3. Possible interpretation of the metric

1t follows from the first of equations (6) that for small (with respect to r,) values of r
the two “radial” co-ordinates o and r become approximately identical. According to (8)
therefore, on the laboratory and astronomical (as distinct from cosmological!) scale, the
predictions of the new theory are indistinguishable from those of classical electromag-
netism and General Relativity. Electrostatics is still governed by the Coulomb law and the
“tests” of general relativity are valid to a high degree of approximation. If our theory is
correct, this constitutes an explanation why no local breakdown of the classical laws of
macro-physics has ever been observed. In fact, one of the tests of general relativity, namely
the gravitational red shift, holds accurately in the new interpretation. For a stationary
(with respect to the observer) source of light, we have, from (7),

2
ds:\/1—ﬂdz~<1—ﬁ>dr, (10)
0 0
exactly.

Nevertheless, two important conclusions can be drawn from our results. The fact
that we get a Schwarzschild solution on which the tests of General Relativity are based,
forr? ~ p2 < r?, indicates that the undertermined constant r, is of the order of a cosmolog-
ical distance. Perhaps it should be identified with the radius of a finite universe. In that
case, the characteristic mass 2m, would become the “mass of distant stars” at least for
large values of g. We could then say with some justification that Coulomb law is valid
throughout the universe. However, such an interpretation can only be tentative at this
stage. All we can say with certainty is that r, is very large, at any rate, in comparison
with the dimensions of the Solar System.
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If, however, r, is not the radius of the whole universe, then we must distinguish physi-
cally between the ““local” co-ordinate r and the “cosmological’ co-ordinate o. A surprising
consequence as far as electromegnetism is concerned, follows. The solution, and hence also
the influence of the (spherically symmetric) static field is real only up to a cut-offat r = r,.
Moreover, it is strictly a Coulomb field (Ref. [1], equation (5.9)). It is as if there existed
a natural screening effect at that distance from the observer. On the other hand the effect
is suppressed in the cosmological co-ordinates (g, 6, @, t) (though, of course, the transfor-
mation between ¢ and r becomes singular at r = ry).

It must be stressed that the theory proposed in this article and in Ref. {1} is very
different from both General Relativity and the unified field theory of Einstein. It collapses
into the former when skew symmetric part of the metric is removed from the structure
of the theory. As it stands however, the metric and therefore geometry of the “‘background”
Riemannian space are not determined by the field equations, as in General Relativity,
but by a new “law” (Ref. [1], equations (3) or (4)). It is the remarkable correlation to the
well-attested General Relativity, shown in the present work, which makes us confident
that it may be the correct generalisation of the latter.

We shall investigate in the next section some of the properties of the background space
and their “general relativistic” implications. It seems that confirmation or otherwise
of the theory will rest on its cosmological meaning at least until more sophisticated,
perhaps non-static, solutions of the field equations are found.

4. The background space

Let us now assume that the metric of the space-time (Riemannian) is given by equa-

tion (7) or
2m rado? A
ds* = <1— —~> dr* — of’? -0 (1.+ %—) aQ? 7
0 2, 22 2m To
(Fo+o0) (11— —
0
with ¢ro = —2m and 2m < g < +c0. For the purpose of calculation it is more convenient

to introduce yet another coordinate, z, say,

(xh x4 %3 x%) = (2,0, 6,70

by

o = rptanz, (D
when
radz?

——  —y2sin? zd Q2. 12
l+ccotz 0 (12)

ds* = (1+c cot z)dt*—

As zincreases to 7/2, g, the “‘cosmological” radial coordinate tends to infinity. It is inter-
esting to notice that when z = g/2, the metric becomes

ds* = dr* —ri(d6® +sin® 0dg?). (13)
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This, of course, is a Minkowski metric whose spatial part is a Euclidean two-sphere of
(constant) radius r,. The surface of this sphere cannot be crossed by a signal sent by
a ‘“‘terrestrial” observer and can be regarded as the outermost boundary of the universe.
What follows is based on the assumption that we have, so to say, left electromagnetic
influence ““far behind”. Here again a difference from General Relativity may be observed.
Cosmological models based on the latter, invariably involve some smoothing hypothesis
about the distribution of matter, a “‘cosmological principle”, for which the corresponding
geometry is calculated from the field equations. We, on the other hand, have the metric
provided for us, to be strict also by the field equations (and the “law” (4) of Ref. [1]),
from which we can determine the properties or state of matter.

From equation (12) we easily find that the non-zero Christoffel brackets (of the

second kind) are
1y, ¢ cosec” z
%\11 "~ *l4ccotz’

{1} = 1}coseczé’ = —sin z cos z(1 +c¢ cot z),

33

1 ¢ 2
= — — cosec” z{1+c cot z),

2 3 2 .
{12} = {13} = cot z, {33} = —sin 0 cos 8,
3
{23} = cot 6,

4 c cosec® z
= — — . (14)
14 2(1+c cot z)
Let us now define the “Riemannian™ Einstein tensor G,, by
Guv = va'—'zl’ a[”R, (15)

a,, being the metric tensor from (12) and the Ricci tensor R,,, and Ricci invariant
R = a" R,, being constant from the brackets (14). G,, is, of course, conserved identically
G”, =0, (16)

if the covariant derivatives are constructed with the help of the Christoffel brackets (14)
as components of the affine connection. Because of the “law”

N
{ﬂv}a = e

((4), Ref. [1]), which enabled us to find the metric corresponding to the nonsymmetric
structure of the unified field theory (Ref. [1]), equations (16) may be written also in the
form

G, = 0. (17
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The non-vanishing components of the above Einstein tensor are

Gy =1,
Gy, = Gy, cosec? § = sin® z(1 +c cot z), (18)
and
Gyy = — %(1+c cot z)*.

0

In view of the more general (than (17)) conservation law discussed in a separate publication
(Ref. [3]) it may not be very meaningful to read too much physical significance into G,,,
G2, and G;;. It is curious that the first component should be constant though G,, also
tends to unity as z tends to n/2. This may imply that we have constant pressure “‘at infinity””.
On the other hand it is difficult to escape relating G,, to energy density D. Indeed, if
as in General Relativity,

. 4
Gua = —KayaTy = —kDay,,

then

3
kD = — (1+4c¢ cot z), (19)
r

0

and tends to the general relativistic value for a spherically symmetric, static cosmology
as z tends to 7/2, that is as we approach what in the interpretation of a local observer
is infinity.

We conclude this section by considering the geodesics at a cosmological distance
from such an observer. If dots denote differentiation with respect to s and we suppress
the ¢ co-ordinate, as we clearly may, by putting ¢ = /2, we get from (12)

¢ cosec? z

Z4
2(1+ccotz)

z%—sin z cos z(1 + ¢ cot z)8?

‘a t 2zt =0
—5%( +c cot z) cosec” zt* = 0,

842 cot zz8 = 0, (20
and
.. ccosec’z ..
T— ———— 271 =0,
1+ccotz
together with the “first integral”
A

— 22—k sin? 262 1))

1 = (1+ccotz)rt?—
( ) 1+ccotz
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From the last two of equations (20)

. k 0 2 (22)
-, = wgy €OsEC” z,
t 1+ccotz ¢

where k& and w, are constants of integration. Hence, from (21)

., k*—l-cootz 5 R
f = - —wgcosec” z(14 ccot z), (23)
I‘O

For a signal therefore to reach observer infinity, we must have
k= V1+ 2ol . (24)

4. Expansion of the universe

The metric (7) allows in certain cases expansion of the universe as far as a local
observer is concerned and of course, only up to the absolute limit expressed by (13). It
is of interest to see what these cases are and to compare the results with the Hubble ex-
pansion, say in a de Sitter space-time. To this end we consider again the geodesics of the
last section, suppressing this time the angular , # and ¢ dependence from the start. In the
de Sitter case, we have, as is well known,

S dr?
2 2
ds® = (1— 3> dt”— s,
\ r

Ty

leading to

Fo= -, (25)

(dots denoting differentiation with respect to s). We will now compare the (exact) formula
(25), with the corresponding result obtained from

5 2m R do®
ds? = [1— =) di* - — , (26)
0 0 2]1’1
) (-3
Fo o
or
B m »2\2 29é2 92 -1
i+ =) - 14 A = 0. 27
i () - (1 @7
Letting

u = ¢% (28)
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equation (27) becomes

u 2m

s 2Nz T 7
0 0

1+ =5

1+ %)

on changing the independent variable from s to ¢. Hence

.2 2m 92 :
0" =u=k+ —|[1+ =) (30)
e g

and substituting into equation (27),

2\2 2
" m 2 2m
o+ — (1+ —-—02) .t (k+ ~—><1+ —~92)=0. (31)
0 ro Fo o L

Hence for o such that

¢

d 29
Z: ’ ()

2m < p<€ry and k>0, (32)
we obtaine approximately
. 2k .
o="2, (33)
To

This is again a Hubble-like law of expansion. Except for its sign we cannot determine the
constant k£ unless we indulge in some quesswork. In equation (25) r, is H-! where H is
the Hubble constant. We may perhéps be allowed to retain the same meaning for 4 also
in equation (33), that is as the value of ¢ when the velocity of recession of an extragalactic
nebula becomes equal to the velocity of light ¢(= 1). The way in which the metric (26)
was derived suggests that 2m represents the radius of the primeval atom. If we take density
of matter as 10-28—10-3! gcm3, and the radius as the distance of a Hubble horizon
from the observer, inequality (32) becomes something like

~ 10 cm < 9 € ~ 10°%cm. (34)

In other words, according to (33), the Hubble law of expansion holds for relatively nearby
galaxies.

1t is curious to note that for galactic distances (¢ < 7o), the expression (31) approx-
imates very closely to Newtonian inverse square law that might hold as if the observer
were located at the centre of the universe.

To get some idea what might be the actual value of k¥ we must again change the in-
dependent variable in equation (30) from the proper times to the co-ordinate time 7. We

have
o f do\?
2 2
¢ _T(dr)’
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and, from (26),
2m\7! 2m\™? 02\ 7?2 do \?
22 1 2= 1+ {1- 22 1+ 2 -2 f e .
o (=) [ 0-2) (o) 23 @
Eliminating 7> from equation (30), we find that
do \/;+2m/9 2m 0®
= “{i—-—J 14+ .
dt k+1 0 + rg (36)

Let us now suppose that

0= 2m when — =1, 3
0 =ro > it 37

so that ry is the actual radius of the universe, or the distance of the Hubble horizon from
the observer. Then & = 1/3 and the (approximate) law of expansion becomes

. 20
= — = H?, 3
¢=732 0 (33)

where H is the “corrected” Hubble constant. From (36) we now get for extragalactic

distances
dop . 3H? 2
— a1+ — .
dt — ? ( 2 ¢
Let us further suppose that ¢ = 2m when 1t = 0. Then

6 6 H
2m+-\Z~~ \/4 ‘

\/EHT

1—mH /6 tan > 2

tan

)
i

(38)

This represents an oscillating universe. However, as far as an observer is concerned,
“infinity” is reached (presumably by a receding galaxy) after a time 7 (from the initial
“explosion”) given by

6 Ht _
mHtan\/4 = 1//6,
or, approximately, when
2n 2
T~ o~ (39)
H./6 H

It is difficult at this stage to speculate with any certainty whether this or double this time
represents the actual period of oscillation of the universe. Clearly from our interpretation
of r, it cannot become negative as the approximate formula (38) seems to require. Perhaps
the modulus of the right hand side of (38) represents the actual, physical distance.
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5. Conclusions

In this and the preceding articles (Refs [1, 3]) we have attempted a further reinter-
pretation of Einstein’s nonsymmetric unified field theory based on the belief that it represents
the correct extension of General Relativity to nongravitational fields (that is to electro-
magnetism, as the only other known macroscopic field; discussion of reasons for excluding
nuclear fields is beyond the scope of our aims here). Our starting point was (Ref. [1])
solution of the metric problem. It is an additional postulate of the theory that the metric
(tensor) should be determined from the differential equations obtained by equating the
Christoffel brackets formed from the latter to the symmetric part of the affine connection
derived from the field equations. Epistemologically this is no worse than regarding as
the metric, the symmetric part of the fundamental tensor as Einstein would have it. The
results obtained from our hypothesis however, are sufficiently surprising to suggest that
we may be on the right track.

We saw (Ref. [1]) that one consequence of it was to limit the number of possible,
static, spherically symmetric solutions of the field equations to just two. Moreover, we
were unable to find physical meaning for one of these; it was somewhat fortuitous that
this solution should be related to the presumably non-existent magnetic monopoles.
(Strictly speaking this is an unwarranted conclusion, the theory merely implying that if
magnetic monopoles do exist, they are either not spherically symmetric or have very unusual
properties.) On the other hand, the second solution given by the metric (1) gave the exact,
inverse square Coulomb law of force between static (symmetric) charges.

This in itself would be a considerable achievement as far as Einstein’s theory is con-
cerned. However, we have seen here that we can go further. If the integration constant r,
can be interpreted as the radius of a finite universe then the cut-off of the electric field
implied by the metric at this distance from an observer is not a serious problem. This then
is the genesis of the cosmological interpretation of the metric described in the present
work. We have seen that when the metric equation is written in the form (7), we obtain
a cosmological model which has the remarkable property of reducing to a Schwarzschild
space-time for a ,local” mass source. We have already remarked that this fact coupled
with the Coulomb law could be an explanation why it may be difficult to seek a local,
that is a laboratory, or Solar-System-scale test of the unified field theory. It may be that
discovery of cylindrically symmetric, or perhaps time-dependent solutions may reveal
some peculiarity in, say, the structure of the Maxwell field which will lead to such a test.
This however, is doubtful. Failing a local test we must look to galactic or cosmological
consequences of the theory to seek its empirical confirmation. It is in this spirit that the
present model is proposed.

It is interesting to note that the model of the universe based on the metric (7) arises
apparently without appealing to a “cosmological principle”. It may be held, of course,
that such a principle is concealed in our interpretation of the cosmological co-ordinate o.
Even if this were granted however, it should be clear that we have here a very different
kind of hypothesis from those habitually postulated in current cosmologies. We speculate
on the interpretation of geometrical results instead of assuming a priori this or that distri-
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bution of matter. It is gratifying that we can derive conclusions which within admissible
range of accuracy are not at variance with observational data. It is of course, another
matter towards the boundaries of the visible world where we may expect our theory to
be tested by a suitable analysis of current observations.

We should note in conclusion that a simple calculation of the Riemann-Christoffel
tensor of the Riemannian space-time with the metric (7) shown that the relevant space-time
does not admit hyperplanes of constant curvature. Hence our metric does not belong to
the Robertson-Walker class of universes and can not be transformed into one of these.
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