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DYNAMICS OF A THIN SHELL IN REISSNER-NORDSTROM
GEOMETRY*
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The radial motion of a thin spherical shell of dust approximated by a singular surface
Jayer in Schwarzschild and Reissner-Nordstream geometries is discussed in terms of an
effective potential and a development of an event horizon, during collapse of a shell, is
investigated.

1. Introducrion

A spherically symmetric collapse of a cloud of dust surrounding a central black
hole can be investigated in two different manners:

(i) each particle of the cloud is treated as a test particle moving in a background
geometry generated by the central black hole and the inner part of the cloud or

(ii) one can represent the cloud by a set of thin shells with finite energies E (and
finite electric charges Q in the case of charged dust) and therefore separately solve equations
of motion for each shell in the geometry generated by the matter inside it.
In the first approach when a test particle of energy E and charge ¢ falls onto a black hole
described by a mass m and a charge ¢, the change in black hole parameters is dm = E
and de = ¢. Thus to obtain formulas for final m and e one has to integrate infinitesimal
changes over the whole process of collapse. On the other hand, the second method gives
such exact formulas immediately.

2. Dynamics of a thin shell

The dynamics of a thin spherical shell of dust in Schwarzschild and Reissner-Nord-
strem geometries was investigated by Israel [1] and de Ia Cruz and Israel [2]. KuchaF [3]
and Chase [4] considered more general case of fluid shells. One can find the equation
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of motion approximating a thin shell by a surface layer on which the energy and electric
charge densities are singular.

The world lines of particles of the shell form a timelike hypersurface X which divides
spacetime into two parts. The inner part V,, in general, is described by the Reissner-
Nordstrem line element (units in which G = ¢ = 1 are used)

(ds®), = frdil—f{ 'dr* —r*dQ?, 1)
where
2m, e
f1(")=1‘“7+;§ (2

with m, and e, being the mass and electric charge of a central black hole. In outer region V),
the metric is similarly

(ds?), = fodii—f; 'dr* —r?dQ, 3)
where
2m, e;
fz(")=1——r—+r—2 C))

with m, = m;+F and e, = ¢; + Q. Here E and Q are energy-at-infinity and charge of
the shell respectively. The hypersurface X is described by r = R(z) and has intrinsic
metric

(ds*)y = di* —[R(x)]?dQ>. (5)

The mathematical grounds of how to relate the matter stress-energy tensor and a jump
in the energy-momentum tensor of the electromagnetic field to the discontinuity of the
extrinsic curvature of ¥ are given in [1-3]. The equation of a pure radial motion for the
spherical shell of dust (with surface area equal 4nR?*) obtained by de la Cruz
and Israel [2] ist

1+(-‘%>2=A+§+;—; ©)

with
B = m,+m,—A(es—e})|(my—m)), )
4C = A(ej—e})[(my—m)? —2(el +e3) +(my—m)*/A ®

and the constant 42 = (m,—m,)/# being the ratio of a total gravitational energy
E = m,—m;, to the “nucleonic” mass .# of the shell . The nucleonic mass .# is the sum
of the rest masses of all particles forming the shell. The equations (6)+(8) are valid also
for charged fluid shell [4]. In such a case the nucleonic mass .# appearing in definition

- 1 Egs (30)+(32) from [2].
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of A has to be replaced by the total proper mass being the sum of .# and the internal

thermal energy. The total proper mass is not conserved  (d# . = —pd(4nR?) for

adiabatic contraction) what means that 4, B and C are no longer constant of motion.
The equation (6) can be written in a more convenient form

dR \* a\? 2m e
M —) =(E- =) = [1- 2+ 22 )22
(&) -(=%) - (=% %) ®

o= e+ “—0— . (10)

with

In the case .# — 0 and Q — 0, what corresponds to setting down &« = e,Q, one gets an
equation of radial motion for test particle (with zero angular momentum). By introducing
effective potential in a well-known manner (for example [5, 6]) one rewrites equation (9) as

, {dRY? . -
M2 —=) = [E-U"R][E-U"(R] (11)
with effective potential
2 2\1/2
U*(R) = -f;_ + (1— % + %-) M. (12)

The asymptotic formula of U+(R) at large values of R:

. eQ Q* M moH
UT(R—> +w) = R+2R 3R R + . (13)
agrees with the potential describing similar process in Newtonian theory. Thus the terms
e, Q/R and Q%2R in Eq. (10) can be interpreted as representing the shell-hole and shell-
-shell electric interactions and the term —.#2/2R as representing shell-shell gravitational
interaction. A

In the test particle approach (x = e, Q) the positive and negative root of the effective
potential define the regions of space attainable for particles and antiparticles respectively.
The states with energies less than negative root of effective potential, i.e. negative root
states, correspond to 4-momentum pointing toward the past (antiparticles) while positive
root states correspond to future-pointing 4-momentum (particles).

Here only a part of UH+(R) represents a set of turning points for the shells with different
energies and due to the nonlinearity of U~(R) in Q and .# this root is not a set of turning
points for a shell made of antiparticles. In order to examine the structure of U+(R) we
apply the process of energy extraction to the physically well defined shell, e.g. to a shell
falling down from infinity. The most effective procedure of energy extraction is to lower
the shell in a quasi-static manner (with infinitesimally small radial velocity), then the shell
energy for each value of R is infinitesimally greater than U*(R). Such a procedure is possible,
in principle, as long as the tidal gravitational forces are finite, what happeas if the radius
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of the shell is greater than the gravitational radius of configuration, that means when
R>r, = my+(m3—e3)!/? (14)

with m, = m, + U*(R). 1t turns out that this does not happen for
R =1y = my+(mi—ei+.4%)"? (15)

for which both sides of (14) are equal. It means that even if the most effective procedure
of contraction of the shell is realized an event horizon appears outside the shell when it
crosses R = r,. Thus the minimal change in black hole mass, when the shell of a charge Q
and nucleonic mass .# falls in, is

Ey = U™(ro) = (e,Q+ Q%2447 [2)[r,. (16)
In general case of a shell with energy E an event horizon appears at
ro =m;+E+[(m+E)}’—(e;+0)*1"* = ry. an
Although the inequality (14) holds also for
my+(mi—-eH)’? <R < ry (18)

so there are states representing the shells outside the gravitational radius even for E < E,,
they are nonattainable for shell being outside r, and they are not interesting from physical
point of view.

The formulas (11} and (12), after replacing constant .# by the total proper mass
M o (R), are valid also for a perfect fluid shell.
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