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In the paper an analytic structure of the electromagnetic formfactor of pseudoscalar
particles, interacting via @* hamiltonian, in the coupling constant complex plane is studied
and a possibility of applying Padé Approximants (PA) to its perturbation series is considered.
The study is based (in the elastic approximation) on the Omnés equation. Serious difficulties
are anticipated when trying to apply PA to the series. This conclusion is supported by negative
numerical results obtained up to fourth ord_er. For illustration, a simplified model is considered
wherein one can study analytic structure of the formfactor in more detail and also the
perturbation expansion up to eighth order can be found without excessive difficulties.

1. General remarks

Padé Approximants (PA) [1] have shown to be a useful calculational tool in many
problems of theoretical physics [2]. It has been proved in the framework of potential model
that, for many physically interesting functions, PA formed from power expansions of these
functions converge to exact values [3]. The situation is much less clear in models of
quantum field theory. Here, as far as we know, only numerical investigations have been
made, and moreover, because of difficulties in calculating higher order expansions, only
lowest order terms have been found and PA constructed from them compared with ex-
periment [2].

Such a procedure, while offering a satisfaction from ‘“‘doing physics™, sheds little light
on both, applicability of PA to a particular model and an adequacy of the model for
a given physical process.

There is, however, one notable exception. We mean the n—r scattering described
in ¢+ model. Here, it turned out to be possible [4] to calculate S matrix up to the fourth
order and compare results from third and fourth orders (to study scatteringin 7 = 1,/ = 1
channel in the third order one had to use K matrix approach because up to this order S

* The study was supported by the Polish Ministry of Higher Education, Science and Techno-
logy, project M.R.L. 7.

** Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.

617)



618

matrix has no unitarity cut [5]). They were quite similar what suggested a convergence
(the fast one!) of PA for the S matrix perturbation expansion in that model. A compatibility
of those results with the experimental information on m—n scattering, particularly in
T =1, I = 1 channel, was also of a great importance.

There exists, however, other experimentally measurable function describing n—n
interaction — namely the electromagnetic formfactor of pion. If one adds to the ¢* model
lagrangian a standard minimal coupling with an electromagnetic field, then it is possible
to find the formfactor up to fourth order in the n — = coupling constant. Feynman diagrams
contain one loop more than corresponding diagrams for the amplitude and therefore
calculations are more difficult but resulting expressions are still numerically tractable.

The formfactor, particularly in the elastic approximation described below, is closely
related to the amplitude, but its perturbation expansion is entirely different. Therefore,
it seems interesting to see what happens with its PA. Even if, in analogy to the results
obtained for the amplitude, one expects a fast convergence, there are still many questions
which seem to be interesting and cannot be answered a priori. One can ask e.g. which PA
will be the best ones for the formfactor — there is no guiding principle like unitarity, here,
which could select the diagonal PA ; what will be a width of p obtained here? One could
also study an influence of inelastic contributions on ¢ parameters. As will be shown below,
these questions cannot be answered at all because analytic properties of the formfactor
in the coupling constant plane seem to exclude a convergence of PA in the physical region
of the coupling constant.

Although the present study may seem slightly obsolate and does not conform with
the recent trend of exploiting a connection between variational principles and PA {6]
we think it brings some new and nonobvious information.

2. The electromagnetic formfactor in ®* model

We use the notation of Bjerken and Drell [7] and follow closely definitions of [4].
The formactor F(g?) is defined by

_iQ2n)**(g—p+—p-)

(n'n” outij(g) 10> = (p+—p-YF(q’+ie), (2.1)

(2n)* v m
Jul(@) = [ daze™ ) (2), (22
J2) = Hp-(20,04(2) p4(D3,9-(2)]:. @3)
Hamiltonian density for &* coupling of pions is
H(x) = gol4: (pLX)F (%)), (24

where g is an unrenormalized coupling constant. The renormalized coupling constant
is defined by

ATs=%41=%u=%H=g{ 0 T=1 (2.5)
4 T
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Normalization of A" can be seen from

B o r
S“—(Sfi (2)(2) (l PI)ZA(Stu)P (2'6)

Sy; being m--7 scattering matrix and PT isospin projection operator.
It is well known [7] that F(q?) satisfies the following dispersion relation

oo

s Im F(s ) ,
F(s) = F(O)-}— — ds’. @
(s —5— 18)

The pion mass will be taken henceforth as a unit. (2.7) should be understood modulo
a number of necessary subtractions. It appeared, however, that one subtraction has been
sufficient to make all integrals converging, up to the fourth order.

We concentrated our study of the formfactor on a search for the p meson pole. This
is well known to dominate the experimental shape of the formfactor for low values of
g* [8], and it can be shown that the appearance of this pole on the unphysical sheet of F
is a natural consequence of (2.7). Therefore we decided to use equation (2.7) and
calculate consecutive orders of F in the iterative way, exploiting a condition expressing
Im F through contributions from elastic intermediate states and neglecting inelastic ones,
As it is well known ¢ couples weekly to four pion states, so such an approximation should
not influence its parameters much and cannot endanger its existence.

We recall that the pole appeared in the amplitude without taking into account in-
elastic intermediate states. Thus we think it to be reasonable to start calculations with
a simplified expression for ImF

1 S=4 roia=1 . .
ImF(s) = —— [|—— A" 7" " (s—ie)F(s+ie) (2.8)
s»4 327 s
and only after finding the pole on the unphysical' sheet, eventually to try to improve its
parameters by adding inelastic contributions to ImF.

After making this approximation we obtain an interesting information on a behaviour
of F in the complex coupling constant plane using analogous information on AT as
an input. One could argue that too little is known about the latter to draw any conclusions
about the former. It happens, however, that it is sufficient to assume an existence of the o
pole and the way it behaves with changing value of the coupling constant, to find in-
formation on the analytic structure of F which is crucial for a behaviour of PA to F.
It is assumed below that for growing values of the coupling constant g the g pole approaches
the threshold, to reach it at some value gy, and becomes a bound state for g > g¢. The
o pole stays on the unphysical sheet for g < g and escapes to infinity when g — 0. Such
a behaviour of a resonance pole seems to be perfectly reasonable and takes place for
virtual states in potential models. Moreover, Bessis and Pusterla [4] found that when
they changed g near the value corresponding to the physical ¢ mass, the pole moved in
agreement with the above assumption.
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3. Analytic properties in the complex coupling constant plane

Inserting (2.8) into (2.7) and using an obvious condition F(0; g) = | we have

oC

F(s:g) = 1— —— \/S’““" AT — e @)F(s + s g)
8 3277 s’ s'(s" —s—ie)

4

(3.1)

This is the Omnés equation [9] when we neglect intermediate states also in the unitarity
condition for 4T~ !7!
T=1,1=1 1 r T=1,l=1
ImA ™" (s;8) = —— |— A (s; 9% 3.2)
s>4 32 M

A particular solution of this equation is the Omnés function

s < ds' A== g o)
Foi ) o og L _ 33
(53 8) = exp I:Zm j '(s'—s—ig) £ AT — e g)] ¢y

Although it is not the only solution of (3.1} it can be shown to have expansion in powers
of g identical with the series obtained by iteration of (3.1) — so it is the solution we are
interested in.

Now we can study, by using standard methods, singularities of F, assuming the prop-
erties of AT="'"! as in the previous section.

The singularities are of two types: (a) pinching singularities, (b) end-point singularities.

(a) We consider only singularities arising from pinching of the contour between a zero
of the denominator and the pole of A7="'='. As the pole of 47=""'~" lies on the un-
physical sheet and does not depend on s (but on s’), to obtain pinching with the s depend-
ent denominator, we must push s from the upper half plane of the physical sheet to the
lower half plane of the unphysical one. When s crosses the integration contour we must
add

2mi log AT (s +ie; g)
s AT=0 g @)

o the integral and therefore F on the unphysical sheet is given by

Aron "5 )

AT g E(s; g). 3.9

Funph(s; g)

. A and F without the subscript mean values on the physical sheet (lower half piane).

We immediately see that F,,,, (5; g) has a pole for the value of s for which Af;,é’ =
an analytic continuation of A7="'=! (s+i¢; g) to the lower half plane — has also one.
It is just how unphysical sheet poles of A7='!=! induce unphysical sheet poles of F.

A position of this pole in the g-plane depends on s.
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(b) Singularities coming from approaching end-points of the integration path by
singularities of A7~ '=! are s independent and they can appear only at g = grand g = g.
Moreover one can expect that F has cuts for such values of g (complex) for which the pole
of AT=% =1 [ies on the integration path.

Img
[
| c. 0.
D; \ -
e/} (s) gr Reg
C.

Fig. 1. Singularities of F(s; g) in the complex g plane

To see whether for these values of g we really have a discontinuity of F we must
calculate a change of F when the pole of 47 ~% ~! crosses the integration contour of (3.3).

Let C.. be a set of values of g for which an analytic continuation of 47~ =(s+/¢; g)
has a pole for s > 4. C¥ = C_ because

(AT=1,I=1(S; g))* = ATzlJ=1(S*; g*) (35)

Now let us consider what happens in s’ plane (g,(s) denotes a value of g for which the ¢
pole appears at a position s on the unphysical sheet of AT=! =1,

A Ims’

Sp4lg)

Integration path
/ for g below C,

unitarity cut

!
tIntegra)‘/'on path
forg above C,

Fig. 2. Contour of integration in the calculation of 4, in (3.6}
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Drawing Figs 1 and 2 we have assumed that the p pole approaches the real axis from
below when Img grows but the inverse could also be assumed and it would result only
in the interchange of C. and C-. Thus when g approaches C. from below, the pole ap-
proaches half-axis s > 4 also from below. It is depicted on Fig. 2 by shifting the integration
path p, slightly above the real axis. When g is above C,, the pole is above the real axis.
This is again shown on Fig. 2 by shifting the integration path p. below the real axis.

Subscripts “e” and “i” mean exterior and interior of the loop formed by C. and C_
and the corresponding parts of the complex plane are D, and D;.

An analytic continuation of AT="!7!(s'+ie; g) in the neighbourhood of the half-
-axis s’ > 4 will be henceforth denoted A4, and s,.(g) will be a position of the pole of 4,
as a function of g.

Now we are interested in a difference

ds’ A, 9 ds’ A(s'; 8) !
A+ = I log ’ - N \ IOg ’ |
s(s'—s) T A 8) s(s'=s) TA(s; 8]

\yeDe P 1geb;

(3.6)

It can easily be seen to be equal to

j ds’ A5 8)
lo

S(5—s) PA(sig)
Cp

C, is as shown on Fig. 2. Taking into account the obvious assumption that the ¢ pole
is a single pole we see that A,(s’; g) * (s"—s,,(g)) is regular inside C, and therefore

dl A I; . I- d/
A+=J 5 log (558G S“”—j ? log (s"—s,4)

s'(s'—9) A-(s; 8 (s’ —s)
Cy c
d ’ P+ dS, 2 . s _ 4
= - 7 ,S log (S'——Sp")') == 27'[1 _— = -—7—t—l~ log -Bf(g—)_f gl I
s'(s'—5) s'(s'=s) s 5,48  A—s
Co
and then
Sp+(g)—s 4
Fo(s38) = Fi(s3 8) 2~ —. 3.7)
sp+(g) 4—s
F,, means a continuation of F from D, through C.,.
Analogously
s —-s 4
Fo(sig) = Fis:g)-2r®=5. % 59)
Sp+(g) 4-—s

We recall that s,_(g) is a position of a pole of 4. on the upper half plane of the unphysical
sheet (i.e. the upper half plane obtained by a continuation of A(s"—ie; g) from the lower
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half-plane of the physical sheet through the unitarity cut). It is visible now that zero and g,
are really branch points of F,. Moreover F; and F, are different analytical functions and
cannot be obtained one from the other by an analytic continuation along any path.

One can easily see that just F; is a physical formfactor, because it is this function
which is a solution of (3.1) for g > 0.

An interesting observation can be made that g is not a branch point of F;. Indeed,
if we denote by F;, and F,_ analytic continuations of F; through C, and C_ respectively,
then

Sp4(8)  4—s
Fis(s;g) = Fulsi @) — "~ (3.9)
5p+(g)""5 4
and

(g) 4-
Fi—(s;g) :Fe(s; g)-_s_p__(g_)__._s. (3]0)

sp-(g)—s 4

If now g > gy then 0 < 5,,(g) < 4, but as

574(8) = 5p-(9) (3.11)

(because of (3.5)) then for g > gy, 5,.(g) = 5,-(g) and

Fii(s;8) = Fi(s; 8 (3.12)

g>9r

However, g = 0 is a branch point of F; because 4, cannot have poles on real s axis
for g < 0.

Expansion of Omnes function is
here an asymptotic series for F;

e % Reg

Expansion of Omnes function is
\ here an asymptotic serjes for F,

\

L

Fig. 3. Conjectured sectors of convergence of PA for F

Straight lines tangent to C, and C_ at g = 0 (/. and /_ on Fig. 3) divide the complex
plane into two sectors. Series obtained from a power expansion of the r.h.s. of (3.3) is
an asymptotic expansion of F, in the left sector and of F; in the right one (Fig. 3).

If we make now a wishful assumption that PA converge somewhere near the origin,
the question is: what is a function they converge to? We do not have any theorem that
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could be applied in our situation, and we can, therefore, only make more or less plausible
speculations. We expect that PA would converge to F, in the left sector and to F; in the
right one. If this were true, a rate of convergence on the positive semi axis would depend
crucially on the angle between /, and /. and in a case it was small, the convergence would
be very slow and would change into divergence if it were zero.

Thus we conjecture that even in a case of a perfect convergence of PA constructed
from the perturbation series for the scattering amplitude, there can be serious defficulties
with convergence of PA for the formfactor just in the region of physical values of the
coupling constant. Whether or not these difficulties actually arise depends however on
details of the model and can only be checked numerically.

We want to stress that the above conclusions should also be valid when inelastic
channels are included. Indeed, if they were to cancel singularities introduced by elastic
channels, we would not observe the ¢ pole in the formfactor experimentally.

4. Calculation of PA up to the fourth order

Keeping in mind what we have learned from the above considerations we can calculate
perturbation expansion terms for the formfactor up to the fourth order and see what
happens with corresponding PA. Because of F(0;g) = 1 and A7~ " '"'(s) = 0, the series

g

=

takes the form

F(s; ) = L+ g°F3(5)+ 8 F3(s) + g*Fuls). (4.1)
We used terms of the perturbation expansion for A" '=! calculated in [4]* and
inserted them into (2.8) and then we calculated dispersion integral (2.7). In second and
third orders we were able to perform almost all integrals analytically and the corresponding
formulae are presented in Appendix A.
There were, however, nontrivial numerical difficulties in the fourth order. According
to [4] A1=""'=! can be expressed as follows

AI:[,!“—' l(S) — AAB(9)+A¢(5)+AR(S)+A§(‘S)+Af(S)’ (43)

! Checking formulae in [4] we were unable to make our expressions for P(s) compatible with C.19
in [4]. In our opinion

Vs~16 Vs—Va+x?

{ dy
P(s) = — xdx =
s Vi ¥y

0 Vatx2

242 2 Vsirs—4 V2 2 (V)b x Vi — 5% — 4
\/y X o2yVsts—4 VY (Vs )V - . “2)

7 [ —— = e ———
Yi—x*-2yVs+s V2 x2 ("S—y)—x\/yz—xz—

There was also an obvious misprint in C.16.
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where

AL

| 1 2 Y ar (4.4
A = = )Jf(s,t)Ql(+S—_z>, 4)

4

’

L [s'—4 , S , , .
— ooy o A+ BN =F [4x()+ Bo(]}, i = 4B,

O

20 _ J“ _{1:" (t —4)’(}'
(777:) \s(s —4)3

a4

filsosy = x[4e(& n, D= @& n, —2)=3Q0()Qo(m], i=g,
—25R(¥, 8). i =R,
—5R(s’, 4—s—5"), i =R,
f(57), i=/ (4.5)

Definitions of A4q 5, Bo,, ¢, R and f are the same as in {4].

All 4; except for i = AB are expressed as triple integrals, so that finally £, is expressed
by quadruple integrals. To calculate them we used iteratively subroutines INTGSX (describ-
ed in [10]) and CPINTX — its version for complex-valued functions.

A difficulty arises from the fact that 4, has an imaginary part coming from in-
elastic contributions in direct channel and it makes Im[;'4 complex. Of course, the full ImF,
is real but it results from cancellation of the imaginary part of 4, with contributions of
intermediate inelastic states directly to Im#F,, and we have neglected the latter. Therefore,
for compatibility, we should neglect inelastic contributions to A4,. It is impossible in this
form, as we have to continue A, analytically to the unphysical sheet (to have the form-
factor there) and its imaginary part contains 9(s—16). 4, contains also contributions
from elastic intermediate states in the crossed channel, and therefore it cannot be neglected
as a whole.

It is naturally possible to express 4, in a different foim with contributions from
intermediate states in direct channel decoupled from crossed channel elastic contributions
but such expressions would contain one integration more and it was outside our numerical
possibilities to calculate them.

We have decided therefore to.leave 4, in the form given above. In this way we had
real-hermiticity of F on the physical sheet broken, but we thought that a size of the breaking
is a good measure of an error we made leaving 4, complex. We checked a large area of
the physical sheet and found that F,(s*)—Fi(s)| was never larger than 0.5%. Later,
however, an unwanted phenomenon occurred for which, we thought, was just ImA (s > 16)
responsible. We comment on this below.
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Having calculated F,, F; and F, we were able to construct:
[0/2] from the second order,
[0/31, [1/2], [2/1] from the third order,
[0/4), [1/3]," 2/2], [3/1] from the fourth order.
Their explicit forms are given in Appendix B.

To study their singularities in the complex g-plane we used the following tactics.
We calculated [M/N] for a given s and we found values of g making denominators of PA
to vanish. Then, changing s, we looked for points (of the complex s plane) at which imagi-
nary parts of those g were zero. Lines in the s-plane found this way will be called henceforth

4 Ims:

-05¢

-15¢

A
g=1086

Fig. 4. An orbit of one of the poles of {1/2]¢

orbits of poles. We concentrated our attention on the o1bits passing through the threshold.
All others had large Img in a considerable area of the s plane near the threshold and we
thought therefore that they could not be suspected of reproducing resonance poles.
Unfortunately, even orbits passing through the threshold did not seem to have much in
common with the expected ¢ orbit. They generally form small loops near the threshold
and moreover exhibit a wrong dependence on Reg. Poles situated on them move toward
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the threshold when Reg diminishes in contrast to what we expect (see Section 2). Therefore
we think they have nothing to do with true poles of F. An example of such an orbit is
given on Fig. 4.

In each order there was a pole of [0/N]; which behaved differently. Orbits of those
poles with values of Reg marked on them are shown on Fig. 5. One can see that the orbit
of a pole of [0/4]F passes through the physical sheet near the threshold. We attribute this
just to a lack of real-hermiticity of F. Such a view is supported by the proper behaviour

physical sheet unitanty cut

12 16 20 2 28 .
Res

unphysical sheet

2t
-ab
-2}
-ao}

- 44b

12

Fig. 5. Orbits of poles of [0/N]r

of the analogous orbit in the simplified model considered in Section 5. There, F,(s) is
real-hermitian for all n. Also none of these orbits resembles an expected p orbit (which
should pass through s= 30—10i for g ~ 6) though they seem to change their shapes
in the good direction, as order of the perturbation theory increases.

Concluding we can say that the g pole does not appear in low order PA for the form-
factor in contrast to what happens for the scattering amplitude. It is in full agreement
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with considerations of Section 3 suggesting that an angle between curves C; and C.
(Fig. 3) is small. The behaviour of orbits on Fig. 5 suggests that the latter is not zero,
and therefore that it could be possible to obtain an agreement with results found for the
amplitude if higher orders were calculated.

5. A simplified niodel

We can illustrate considerations of the last two Sections discussing a simplified
model, which has however many realistic features. The general idea behind this simplifica-
tion is to take an approximate amplitude, which would have however proper analytic
structure, and a g-like orbit on the unphysical sheet and insert it into the Omnés equation.
If one were clever enough in approximating the amplitude, so that many orders of its
power expansion could be calculated without undue hardship, then one could see what
happens with higher order PA. All these requirements are satisfied if one takes for the
amplitude (the form of it has been suggested to the author by J. L. Basdevant)

D i 2/1 ) ki1
AT s A= — L,-/» Jxn , (5.1)
0 I— 1[2_/1]1(11
where
1 [s—4
o= — — [—
b 32n s
and [2/1]x: is the corresponding PA for K™=''~'(s; g). Because of the lack of the
unitarity cut in A3 '=' and 427" '7" we could not take [2/1],:: for the same purpose

as above.
It is easy to check that

gZKll
KISH=t = gaf3M"1 and  [2/1]xn = w-l?iﬁ (5.2)
3
thus finally
2
A
A(s; g) = g7A4x() (5.3)

i

1—A5(s)/Ax(s) - g+ \/ 4 Ay(s)- g
32 s

(we use A; for 4] 71,

A numerical study of this function shows that it has a pole on the unphysical sheet
for g < gr =~ 14.54. For higher values of g the pole lies below the threshold and imitates
the bound state. There is, of course, the second pole but its behaviour does not influence
an analytic structure of F near origin, so we shall not discuss it here. The orbit of the former
one, which is of main interest for our discussion, is shown on Fig. 6.
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The Omnés function has now the form

B

B s ds’ A]f?/’ (s’ )/A,(5)+g o(s)A5(s) -
Fore) = ‘”‘p[ fm O T () Aa) £ )AL ] ©9

and shapes of curves C; and C- (Fig. 3) can be found more precisely. Functions A, and A4,
are given in Appendix C.

4‘ ms

physical sheet

20 40 60 80 Res

g=145

anphysical sheet

f
g=3 81
Fig. 6. The orbit of a pole of 4 in the simplified model
It can be shown that
Ax(8) > > +0(1s);  As(s) ==> (=¥ logs)+0| —— lgs (5.5)
s - - s); s — logs . .
2T 1

Therefore the singularities of the integrand as a function of g for s* - o0 can be found
from

l—ologs - g+ifg? =0, (5.6)

where o, B > 0. Now, we can ecasily see that

, Re g(s)
Re g(s) > O, = ——
5 =00 Img(s’) s—=

(5.7)

(for the root which goes to 0 for s’ — oc) what means that C.. are tangent to the positive
axis at g = O (it can likewise be shown that they are tangent to real axis at g = g¢). The
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other pole of 4 goes to oo both for s" = 4 and 5" — oo what means that the only singularity
of F other than g = 0 and g = gy is g = 0. F can, therefore, be written as (after analytic
continuation to the real axis — so it is rather F,)

gr
1 (A4F(s; ¢ F.(s; ¢
F(s: g) = ‘f (38) 1o Res LL8). (5.8)
T g—8 g=w g —8
0
Using (3.7) and (3.8) we immediately see that
1
AF(s; g) = 5 [Fsi g/ +ie)—Fulsi g'~ie)]
Ims, (g) 4s ,
= P — Fo(st g), (5.9)

T see(g)? 4—s

where Fo(s; g') is the Omnés function for g > 0. Fo(s; g’) » 1| when g" — 0+ betause
then 67~ '=" - 0. Moreover, s5,.(g) ~ exp (—1/g) when g — 0 what can be seen from
(5.6). Thus

e
| g7 4F(s; g')dg'
0

exists for all n. As a result F, is, for s < 4, a sum of a Stieltjes and of an entire function.
Although it is well known that PA converge for both types of functions we do not know
of any theorem that would apply to a sum. However, we find the following to be very
plausible:

Hypothesis on Commutativity of Addition and Padeization (HCAP)

Let [M/N],, a sequence of PA to f, converge in capacity to f in some domain Dy,
as M, N— oo (somehow), and [M/N],, a sequence of PA to g, converge to g in capac-
ity in some D, when M, N — o in the same way; then [M/N];,, converge in
capacity to f+g in D; n D, for M, N as before.

It should be noted that even if [M/N] converge to f and g uniformly, convergence
of PA to f+g can be, at most, in capacity. It is easily seen when fand g are both Stieltjes
functions. Then the weight function for f+ g can, in general, change sign and poles of PA
can then appear outside the support of the Stieltjes integral [11].

Assuming HCAP, we have for s < 4 convergence in capacity of [N+k/N]z to F,
in the whole complex plane except on the interval (0, g;) of the real axis. For s ¢ (0, 4),
Fis complex and we do not know anything about a convergence of PA for the first term
in (5.8). We believe, however, that also in this case, paradiagonal sequences of PA con-
verge in capacity in all the complex (g) plane except on (0, gr). Unfortunately, the only
results on convergence of PA for functions with branch points — other than Stieltjes —
concern PA built from Taylor series [12] and our belief can hardly be based on analogy
with those results. However, independently of the detailed shape of a cut joining 0 and gy,
we expect that PA will reproduce F,, which is not the physical formfactor. Moreover,
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though F, has poles on the real line (rather on the lower and upper lip of it, if the cut
goes along the interval (0, g7)), a convergence on it is, at most, slow (if the cut does not
go along the real line, it is somewhere nearby and only asymptotically spurious poles
of PA approach it at any finite order they are scattered in the neighbourhood and cause
sharp oscillations there), or it does not appear at all.

Numerical calculations performed up to the eighth order fully support our expectations
(coefficients of the perturbation expansion expressed by 4, and A4 are given in Appendix D;
PA were calculated using an algorithm described in [13]). Although it was not possible

4 img
o
2 .
& -150 + W0
TS~ o 2672 .
+ -105+1011
it °
*
1
e S o .
8y Reg
pole of the amplitude

Fig. 7. Location of poles of diagonal and subdiagonal PA of F in the simplified model; poles of [2/3] @,
[3/31 +., [3/4] O, [4/4] A, s = 20--0.5; on the unphysical sheet

to determine a shape of the cut defined by PA, nevertheless the behaviour of their poles
was in agreement with our considerations. For s < 4 poles of [N+k/N] with k> 1 all
lie in (0, g1), and for k = 0, —1 one of the poles is outside of this interval but still on
the real line; none of these poles lie near the pole of the amplitude (we expect that for
higher orders there would be more poles outside (0, gr) and that they would cluster at
infinity for growing order — it can be proved that g = co is an essential singularity in
this model).

For s ¢ (0,4) poles of [N+k/N] lie near (0, gr) and for growing N approach it;
[N/N} and [N—1/N] have, as before, one pole far in the complex plane. As before, none

of these poles seem to approach the pole of the amplitude (Fig. 7). Orbits of all these poles
form small loops around the threshold.
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We have also tried to check an unusual behaviour of poles of [0/N]. It appeared
that such a behaviour has been shown this time by poles of [0/4], [0/5], [0/6], [1/6], and [1/7]
(10/2] and [0/3] were identical as in @* because of obvious reasons). Though they behave

Ims § g t4)-251 g {5)-164 g,(6)-18 : g_(71-209 g,(8)-1476
4 10 20. 30 40 50  Res

amplitude

Fig. 8. Orbits of poles of [0/4], [0/5], [0/6), [1/6] and |1 /7] in the simplified model

suspiciously, their orbits change quite irregularly when order of approximation increases,
and their threshold values oscillate, so that we do not think they could approach the pole
we are looking for (see Fig. 8).

6. Conclusions

We see that in the simplified model, considered in the last Section, it is probably
impossible to reconstruct function F; from the perturbation expansion of the Omnés
function. Even if there is a slow convergence of PA on the interval (0, g7), they converge
most probably to an analytically continued F.. For s < 4 there is certainly (if we believe
in HCAP) no convergence on this interval of g, and outside of it PA converge to F,.

In the full &* model we were unable to reach definite conclusions on a location of
cuts defined by PA. They depend on the features of the model unknown to us (a number
of poles on the unphysical sheets and their detailed behaviour at g — 0) and even if these
were known, a lack of knowledge concerning a convergence of PA for functions with
complicated singularities, would prevent us to correlate these features with domains of
convergence of PA for F.

Nevertheless, we think that our arguments, supported then by numerical results
obtained up to fourth order, show that low orders of perturbation expansion of F do not



633

contain sufficient information on the behaviour of F in the physical region (g € (0, gy)).
It is even possible that it cannot be found from the perturbation expansion at all (if the
right sector on Fig. 3 reduces to a straight line).

The only way out of this difficulty would be to insert somehow an additional informa-
tion on a character of a singularity at g = 0, or to seek an expansion around another
point.

The author would like to express his gratitude to Professor G. Biatkowski for suggesting
the study and for many valuable remarks and suggestions. Innumerable discussions with
Dr L. Lukaszuk had the crucial importance for achieving results presented here. A discussion
with Professor J. L. Basdevant has been also very important and his suggestion, pointed
out in the text, helped, through the construction of the simplified model, to clarify many
difficult questions.
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For other square roots a direction of the cut depends on what sheet we are. For
physical sheet cuts go from zero to plus infinity, while on the unphysical one, they go
from zero to minus infinity. This convention leaves values in the upper half plane unchanged

and provides an analytic continuation to the lower half plane.
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