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In this paper the polarization of the final nucleus in the (N, &) knock-on reaction is
studied. Starting from the density matrix formalism the polarization transfer coefficients
are computed. These coefficients describe the transfer of density matrix of the nucleon scattered
on « particles. The capture of a polarized nucleon by the final nucleus gives the polarization
vector of that nucleus.

1. Introduction

The motivation for the study of the knock-on mechanism of nuclear reactions can
be stated as follows. First of all it was shown [1-3] that the knock-on mechanism is the
leading mechanism in the preequilibrium emission of nuclear particles, especially « particles.
The Feynman triangular diagram describes the amplitude of the knock-on reaction. The
investigations of the structure of that diagram can give new information concerning the
amplitude of the preequilibrium reaction. For example, this diagram gives automatically
the asymmetry of the angular distributions of the emitteb particles in the preequilibrium
nuclear reaction.

In this paper the polarization fo the final nucleus in the (N, «) knock-on reaction
studied. Starting from the density matrix formalism the polarization transfer coefficients
are computed. These coefficients describe the transfer of density matrix of the nucleon
scattered on x particles. The capture of a polarized nucleon by the final nucleus gives
the vector polarization of that nucleus.

One of the methods for studying this polarization is the investigation of the polarization
of the nucleons emitted from the final nucleus. If during the knock-on reaction the IAR
(isobaric analog state) is filled, then the products of the decay of IAR, the nucleons, can
have vector polarization.

* Address: Instytut Fizyki Doswiadczalnej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.

(645)



646

2. The non-dynamical description of knock-on reaction
The knock-on reaction

24 W o 3+1 (1)

can be visualized as in Fig. 1. Particle 2 strikes particle 3’ in the field of nucleus W.
In the second stage particle 2’ is captured by the core R to form the final nucleus 1. The
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Fig. 1. The triangular diagram for the knock-on reaction

primes above the particles 2° and 3’ denote that for these particles the off-shell effects
can play an important role.

In order to describe the nondynamical structure of the amplitude of the reaction (i)
we will use the mixed helicity-magnetic number basis for the spin states of particles and
nucleus [4, 5]. For the heavy target nucleus W, the amplitude of the reaction (1) in the
center of mass system of the particle W can be written as follows:

_ 3 { 2 3
TmaaMy = Z _f T}.z'lglz)_3’Tl3’lRMwTM;A;’).RPRPZ’PZS'd pydE;

43’42/ AR

_ - 3 1 2
- j Tkl'}-alzla'TiJ'iRMwTM131'2R
A3 Aia'Ar

X [(Plzt—szER) (Pi' —2my.Ey) (Pg' ~2my.Ey)]” 1d3P2’dE2" (2)

In Eq. (2) the A, denote the helicities for the particles i/ and M; denote the magnetic
quantum numbers. The summation is carried out over the helicities of unobserved particles.
The integration is carried out over the kinetic energy-momentum of the virtual particle 2'.
The amplitude T73,,,,,,, denotes the amplitude for the quasi-elastic scattering

243 - 3+2. 3
The amplitude 7'}, u,, and T3, ., are the amplitudes for the virtual decays
W-—>3+R, 2+R-1 @)

Let us suppose that the polariZation of the initial state can be described by the density
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matrix @},y,3,3,- Then the density matrix for the nucleus 1 can be written as follows [4]

do X
%‘(2+W b d 3+1)QM1M1'

= Z z Z Z TlsMx‘szWQilewizb_le)-le'Izﬁw’ (5)

Axiy Iz HW Mw

where

do
— 24+ W - 3+1)
dw

= Z Z Z Z TlsMMzMWQ;zMwizﬁwThMsz_lw' (6)

Azhz 32 Mw MwM;

The decay amplitude for the process W -» 3+ R can be written as follows [5]
Tlls'lRMW NSWDMW A3’ —/R(‘Q3 )Als ‘AR?
N5 = [(28y +1)/4n]"/% %)

In Eq. (7) Q; .denotes the Euler angles of the relative momentum of particles 3’ and R
in the center of mass system of the nucleus W. For the process 2'+ R — 1 we assume that
the reaction amplitude T ,., is Hermitian. This assumption means that we neglect
the final state interaction in the decay vertex 1 — 2+ R [4]. Bearing in mind this assumption
we obtain [5]:

TM;).; ‘AR T NS‘DM1;2 (2, )A“ "AR? Ngl = [(28,+ 1)f4“]l/2- ®
Substitution of (7) and (8) into Eq. (2) gives

— NSw NSt 3
TﬂaMﬂ-zMW = N""N j Z )Z le'lslzls’
R

A3'A2’

= AR

~S S
Als lRA/; ARDMw/s —lR(QS')DMle”-lR(QZ’)

[(P}Zz —2mgEg) (Pz' —2m,.E,) (p3 —2my.E3)]” 'd®pydE,.. &)
Finally from Eq. (9) we obtain for the density matrix elements of particle 1

do .
—d—c—o"(2+ W b d 3+1)9M1M1’

25,4+ Q2Sp+1) 3
LS S 5 S S ([

A3dads MwMy #A3'42° A3'A'2" ARAr

Au lRA/lz ARDMW 2y — il 23 )DMMz —AR(Qz')PRPz'Ps'dspz'dEz')
leMwlew(j T}. 2 A3A24’3 Az 3'AR’ A}, 2'AR’

DY 2@k iy - 2 (22) Py Py Py d® py dES.. (10)

Mw'd's —
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If only particle 2 is polarized then the density matrix of the initial state can be written as
follows [4]

: 1 :
Q;.zMw;;.zb_lW = m 5Mwﬁw9:11712' (11)

Substitution of (11) into Eq. (10) gives:

9 QW = 311! 25, +1
_— - )= e
do oMM = 62

3312;—'2 My Az ds A3 Ay

Z (5 T}-Z 'A3A243" A/’l;; }.RAi.z ZRDMW}G ’AR(Q3')D§4‘,}.2'—},R(QZ’)

ARAR’
PpP; Py d’ padE, )lelz(j TA 2’ A3A24’3 Az VAR i‘a'}t'R

DMW/I - (s )DM; Ay —AR'(Qz')Pkpé'PS'dsplz'dE;')- (12)

For the completely unpolarized initial state we obtain for the density matrix of particle 1

9 W > 341! 25, +1
—_— —
o MM 6228, + 1)

Azda  Mw  A2’A3" ARA'R

Z (j‘ T7 ‘2434243 Ah lRAlz lRDMv:Vls’—/IR(Qy)

Di}]Az —AR(QZ')P Pz'P3'd3P2'dE2') (f Tx%z'zgzzz'a'gi'v:% RAilz AR
Dy (82, )DM "2 — AR (Qz')P;zP,z'Pg'dsplz'dE’r)- (13)

Mwi's'—i'r

From now on we will assume that the scattering process 2+3’ — 342’ can be considered
as quasi-free elastic scattering. The amplitude for the quasi-free elastic scattering can be
written as follows:

T iy = Auvaig sy @py — 2. (14)

A'3"A3A2" 5

If we use the reduction formulae for the Dj;, (Q) function, we obtain
Dt iy - il @3)D3g 21y 1, () = L (=DM THHIR(S, S, — My, My |L,0)
Ly
(SwSw— A3+ g, Ay — Ag|Lia) D5i(R51),
Di sy =3 @2)Do, sy 2 (Q2) = L (=DM THITAN(S S M, — MY L)
L

{8;8:4~ — Ayt Ag: |L2)’>D (Qz) (15)
where

%= —Ay A+ A=Ak, B=M =M, y = ip—ig—Ay+iy
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Substitution of (15) into Eq. (13) gives

4w 341! 28, +1
do R o Sl
dw Ot Gy = 622028, +1)

Azdz Mw A2'A3

Z — MW A AR M A AR (g Sy — My, My L0

Ar 2" 2’3 LiL»
{SwSw—243 +4g, Ay — Agil o) (S8 My, — MiIL,B>
(8;SiAz—4g, Ao+ Al Lyyy _” Azz';.3zzzs'fa,1'2'z312;.'3'

Ah A3! PRrP, P;.PyP; Pl

JR A_;A,R />)R la/n

DG Q3)DgA25)d’ pyrd pydEy dE) . (16)

Formula (16) gives the non-dynamical description of the knock-on reaction for the un-
polarized initial state. All the dynamical information such as energy dependence of the
vertices are included in the reduced amplitudes A3, ;- However, in many instances we
can obtain important information about the cross sections, polarization, etc. without
knowledge of the above mentioned dynamical information.

Let us consider the knock-on of « particles by fast' nucleons. Recently growing interest
in experimental as well as theoretical investigations of these reactions is observed [6-8].
In the papers [3, 8] the knock-on mechanism is considered as the basic mechanism of the
preequilibrium emission of « particles during the (N, o) reactions. The investigations of
(N, ») reactions are limited only to the study of the angular distributions and energy
spectra of « particles. In our paper we will consider polarization and alignment of the
final nuclei in reactions of the type (N, a).

In the case of (N, «) reactions we assume that particle 3 is identical to the free particle:
3 =3=ua S =4; =0. Eq. (16) can be written as follows

do
—— 2+ W + Doy —
do ( =@t Dewnmy = 167!“(252‘*‘1) Z Z Z Z

Mw  Airir’ Lila
(— MW F AR M A ARG Sy — My, My Ly0) (SySwirs — Al LoD
(8,5, M. =M |L,B> {S\S1Ay— g, — Ay +ipiLay)
DENRQ3)DEAQ,) §§ Ay A, ATH A

A5

A2 AR

AL, PePy Py Py Py Prd®psd®py dE S dEs.. amn

A2'AR

We can define the density matrix for particle 2’ when particle 2 is unpolarized [4]:

do 1
2 — (24 > A2 = ; A, A 18
Diray lw( o’ oz ) 25, +1 PRV VU (18)
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In (18) the 4; have the meaning of the helicity quantum number in the center of mass
system of the particles 2 and o'. Substitution of (18) into Eq. (17) gives

do 28, +1 Z
— 2+ W 1 =
d ( - a+ )QM3M1 ]67‘[2

A2A2’Mw ApAR’

Y (=M AR M AR (S Sy My, — MylLi0) {SySwir, —Ag/|Lio)

LiLy

{(S{S;My, —MY|L;B> {88,y —Ag, — 43+ |Lyy>
2/ do ~Sw 5
0%y 2y = 1o Q2+ ~—>2+1)A WA Al“RA“,R

P, Py PyP} Py Prd®pydE,.d*phy.dE).. 19)
It is convenient to define the decay matrix elements

B; i = 2 Z( 1)M" TAR(SwSwir, —Ar|L1a> {SwSw—My, My|L;0>

Mw Li
A A D5 230),
Fl i inin = Z(-—I)M"”"'_“ {S;S My, =ML, (8,8, Ay —Ap, — Az +ApiLyy)
Lz

A3 AL 2 D (22). (20
Due to symmetries of the Clebsch-Gordan coefficients we obtain for the matrix elements

B; i

B = Z Z ("”DMWHR<SWSW;’-R, —Ap|Lya

Mw Li(even)
(SwSw =My, My|L0>ATY A77.D6(Qs). (21

Taking into account the following well known property of Clebsch-Gordan coefficients

<SWSW*MW, MW‘OO>

—Sw—-Mw
(ZSW+1)( 1) (22)

we obtain from Eq. (21)
By = A0 = BiY. (23)

ARX,R

To obtain the final form of the formula (23) the orthogonality of the Clebsch-Gordan
coefficients was used. For a parity conserving decay we have

14372 = |47 (24)
and also

B = B, (25)
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If we use Eq. (25), the formula for the density matrix gy, - can be written as follows

do 2Sl+1::::z: e
T(2+W—>d+1)gM1M! =“—1—6—n-2— (-—1)M1 tAR' =42

Az AyAp L

{S;S;My, =ML, {(5;81Ay—Ag, — Ay +4g|L,yy>

L 2’ dO' ’ ' rpSw
Dg(Q,) || 03y s Q+a - a+2)G BAR Az ARAA AR (26)
where
G’ = PRP, P PRPy.Py.d’p,d*p,.dE,.dE).

Eq. (26) describes the density matrix elements for the final nucleus with spin S,. The
general formula for the density matrix of a particle with spin S, can be written as follows [4]:

25y
Ols"ll1M1 (251+ 1) z Z q {Qﬁ}MlMl" (27)
where the matrix elements of the polarization tensors are defined as foliows:

{Qz}M,M.' = (-I)S‘—M"(251+1)”2<SISIM'1, =M [Au.
After simple rearrangement of Eq. (26) we obtain

25

o = QS +D™" ¥ a5 {0 as (28)
where (8 = M, ~M")
L, do 2 -3/2 o S;+Ag—iz’
q5* = d—w—(2+W—+cx+1)16n (28, +1) (-1 :

A2'A'2 AR

<SISI'12' —AR’ “‘1’2' +AR|L2?>D§;(QZ')

do
J‘J‘lel2 d (2+a —)a+2)8§ lleAi.le " (29)

In the subsequent discussion we will consider the (N, o) reaction on double even
target nuclei. Moreover we will assume that during the (N, «) reaction the (T —a) nucleus
rests in its ground state. Due to this assumption we obtain 1z = 0 and Eq. (29)can be
written as follows

d -1
9% = [E’ZT Q+W - a+1)16n2(2sx+1)°w]

Y (=D%TCS S Ay, — ALy Dgi(22)

A2 Ay

2 do , NSt 451
02,2y ;a‘; Q+d — a+2)45,45,G, (30)
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where G = BG’. The density matrix o2, can be written as follows

25, n

Q;Lz'xz' (28, +1)7'"? > Y (= 1% 7*2g0(S;) (838245, — Ay inm). (31)

n=0 m=-n
After the substitution of (31) into Eq. (30) we obtain for the g?
28, n

g7 =C Y Z Y (D TR, S 00, —Apiny) (815,14, —Ap|Lyy)

A'd'a’ =0 y=-—n

D#(0z) H — 2+o > 2+2)A30 43, GgY(Sy), (32)
where

d -1
C = [:1-‘1 Q+W > m+1)16n2(2S,+l)'3/2(282+1)”2] :
w

Let us define the polarization transfer coefficients X 2" [9]

Xp=C ¥ (=1 RS, 8,0, — Ay iny)

A2 A2’

do
{8,814y, — Ay LyydDgA(2,) Hd—- Q+4 = a+2)A4543,.G. (33)
J o w
Using Eq. (33) one can write the polarization coefficients for the final nucleus 1 in a compact
form

a5’ = Y X5"q(S2)- (34)

Eq. (34) shows that all polarization observables for the nucleus 1 can be derived from
the quantities X 2",

1t is easily shown from the symmetry properties of the amplitudes A, .2, and the
symmetry properties of the Clebsch-Gordan coefficients that conservation of parity in
the reaction implies:

Xta = (=1 X (35)
Furthermore for the polarization coefficients we obtain

Xp1 = Dpi(Qy)A4",

X;i(; = D,};o(gz')BH, (36)
where
do .
B! = 20(= 1" 23 34, — 11105 (8,8, 3 — 1 10 HE (2+o > 2+2) 143,16,
. ( do
= COn(—1)2T12(S, 8, g ;m“ —=(2+d 1+2') |43, %G. (37

The parameter # denotes the product of the parities n(T —a) n(T—2+n).
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Let us compute the polarization vector of the final nucleus with spin S,. From Eq. (34)
we obtain

ap = %, Xpdy = Xpo+ Z X51qX(S,). (38)
ny

7

It is easily shown from the symmetry properties of Clebsch-Gordan coefficients that when
parity is conserved the X ,';.f." obeys the relation

Xp" =0 for n+L, odd. (39)
Bearing in mind Eq. (39) we obtain for the components of the polarization vector q;,

a5 = Z X5,4(S2). (40)

If we pass to “cartesian” basis the components of the polarization vector can be written
as follows [4]:

Eo=—=(9-1~4q1) = V2 Re (¥ X1,4;(5,)),
"

<&’ _
%Y

& = 2(ql+q 1) = /ZIm(ZX“uq (S2))

v
£ = 4o = Re (¥ X0,45(S2)- (41)

The polarization coetficients g(S,) are measured in the moving reference frame (x'y'z’)
(see Fig. 2). The axes (x'y'z’) are obtained from the rest frame (XYZ) of the nucleus W
by the Lorentz transformation R(p30)L(v) [4]. The quasi-free scattering process S,+0
— 0+, can lead to the polarization vector which has the following components in the
reference frame (x'y'z’) [4]:

Eul(82) = 8(S5;) =0, £y(Sy) #0. 42)

The result (42) means that the polarization vector £(S,) has the direction of the y’-axis
and hence is perpendicular to the plane of reaction. Relation (42) can be written also
for the ¢(Ss)

‘Ii(sz) = ‘11—1(32) = ify'/\/5 > Q(!)(Sz) = 0. 43
Using (43) in Eq. (41) one finds
éx = _Alléy’(SZ) sin @ éy = Alléy’ Cos @, Ez = 0. (44)

From Eq. (44) we conclude that the polarization vector of the final nucleus is perpendicular
to the plane of reaction (see Fig. 2). Bearing in mind Eq. (37), we obtain from Eq. (44)

£ = Cn<S,S, 3, 3 1) sing

[ do s 2
|| o @re = a2 142PGE (50, )
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¢, = —Cn(S;S, 3,3 111> cos ¢

\ dO' NSt 2 g
j @t ak2) 147,76, (S,), L= 0.

v

Let us suppose that the final nucleus with spin S, is in a quasi-stationary state, viz.,
in an isobaric analog state (IAR). The IAR decays with emission of a nucleon with spin 1/2.
The decay of the IAR belongs to the class of the parity conserving decays,

S| = 5+8Ss, (46)

P
Cd
D

Fig. 2. The reference frame x"y’z’ obtained from the XYZ frame by the Lorentz transformation R(¢90)L,(v)

where S denotes the spin of the final stable nucleus with excitation energy lower than the
threshold for particle emission. For simplicity we assume S; = 0. Let us consider the
polarization of the emitted nucleon in the set of reactions A(N, 2)B*(C, N):

0+% > 045, » 1270 47

The polarization of the nucleus with spin S, is described by the polarization coefficients qf,f’.
Let us denote the components of the polarization vector for the emitted nucleon



655

by (p,, py- p.). It was demonstrated (see for example [5]) that the components of the
polarization vector (p,, p,, p,) can be written as follows:

aw 1 / —1; '
—— pe = — (S, + D=2 (8:S; 3,3 iL,1)
dw, 2n
L2(0dd).B
Re [qlézﬁé,z— 1(-Q)C1/26—1/2],
dw 1 ; ; -
—— py = — 25, + D)= H T2 (8813 7 L 1)
do, 2n
La(odd),B
Re [if?ﬁzﬁgf(g)cl/z-é— 1/2]’
dw 1 , _ |
'(‘1"'* P2 = — (2514'1)1"2(_1)8l 12 (818 %’ ‘% \L20>Q;52
w, 2n z :
Ly,B
D) [Cy o’ = (=)™ C_y 017 (48)

Because in the decay S; — 1/24+0 the conservation of parity was assumed, we obtain
(bearing in mind Egs (48) and (34))

aw ! 12, 2 ' 11
—— Pe = — (28, + 1) “niCy,5) {818 7,7 1L,1)
do, 21
La(odd).p  ny
Re [Dj2 ()X 5"q}],
dw

1
Py == P (S, +1)"?y\Cy )7 ($:S; 33 IL,1)
Vi : ; Z :
L>(odd),s ny

Re [iD} (X574,

dw,

aw 1 - ) n
G P = 5 (28 D= TAC, o § g (8181 2, =% IL0>D(Dd;.
1
L3(odd),p ny

(49)
In Eq. (49) dW/dw, denotes the angular distribution of the nucleons produced in the
decay S; — 1/2+0,

dW LZ Lz
dwl - aLzl3Y{3 (9’ (P)’ aLzﬁ = bqup >
L;(even),B
(28, +1) QL+ D\? ‘-
b, = (hl’ﬁ——z“* (8815 =3 1L0) (D™ TIC, % (50)

From (39) we have

g5* = X3 =0 for L, odd. €1))
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The selection rules (51) impose definite restrictions on the polarization of the emitted
nucleon. The polarization vector p of the nucleon is not equal zero only if qu # 0. For
the observation of the polarized nucleon which goes from parity conserving decay of
the polarized final nucleus the following inequality must be fulfilled

do , N aSE 21
5(24-3( — x+2") [AY),1°Ggq; # 0. (52)

It seems that the following conclusion can be formulated. During the (N, «) knock-on
reaction the final nucleus has the polarization vector perpendicular to the reaction plane.
The measurement of this polarization can be done, for exampie, by investigating the
polarization of the particle products in the decay: IAR — nucleon + stable final nuclei.
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