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We decompose the cosmological redshift in the standard Friedmann cosmologies
into two shifts: a Doppler shift attributable to the recession of the galaxies, and a gravita-
tional shift attributable to the curvature of the universe. For galaxies nearby enough for their
recessional motion to be non-relativistic, we interpret our results for the Doppler and
gravitational shifts with the aid of Birkhoff’s theorem.

1. Introduction

It has occasionally been noted (see e.g. Rindler [1] and Weinberg [2]) that the cosmo-
logical redshift cannot properly be regarded as a purely Doppler shift, for the light from
the distant galaxies travels through the gravitational field of the universe, which exerts
some effect on the wavelength. Thus the cosmological redshift is in fact a combination
of two effects: a Doppler effect due to the recessional motion of the galaxies, and a gravita-
tional effect due to the curvature of the spacetime. In this paper we calculate the separate
contributions of these two effects to the cosmological redshift, and we interpret our
results for the case of small velocities of recession in terms of Birkhoff’s theorem [3]. We
also comment on a related field-theoretic calculation by Westervelt [4] of the shift suffered
by a photon traveling through a homogeneous, static distribution of dust.

2. Definition of Doppler shift and gravitational shift

Here and in general the notions of “Doppler shift” and “gravitational shift” in general
relativity are to a certain extent matters of convention (see Synge [5] for a discussion of
this point). We shall define them in the following way. Consider three observers 4, A,
and B. At the event P,, B emits a light beam whose frequency he measures to be vg. 4 absorbs
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the light beam at the event P,, measuring a frequency vg,. A’ is an observer whose
world-line passes through P,, at which moment he is “‘stationary” (a term we will define
below) with respect to 4. We define the Doppler shift of B relative to 4 to be the Doppler
shift of B relative to 4’, and we define the gravitational shift of B relative to A4 to be
the shift of A’ relative to 4. The Doppler shift in this definition is thus due entirely to the
relative motion of 4 and B (i.e. of 4’ and B) and not at all to their separation, while the
gravitational shift is due entirely to their separation and not at all to their relative motion.
In a flat spacetime, the gravitational shift in this definition vanishes, leaving only the usual
Doppler shift.

It remains for us to define what we mean by an observer A’ who is “‘stationary” with
respect to A at the event P,. It is perhaps most natural to say that 4’ is stationary with
respect to A at P, if the four-velocity u’, of A’ at P, coincides with the four-velocity u,
of A at P, when i, is parallel-transported to P, along the light beam joining P, and P,.
However, in a Friedmann universe another natural definition, which we elect to use
because it simplifies the calculations somewhat, suggests itself when the observers 4 and B
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Fig. 1. The geometrical construction for the decomposition of the cosmological shift into its Doppler

and gravitational components. The photon is emitted by co-moving observer B at the event P, and absorbed

by co-moving observer A at the revent P,. A’ is an observer who at P, is stationary with respect to A: A”s

four velocity ¥y is determined by parallel-transporting A’s four-velocity u’y along the geodesic I, joining A’

and A in the three-space X of constant cosmic time #.. The cosmological Doppler shift of B relative to 4

is the shift of B relative to A’. The cosmological gravitational shift of B relative to A4 is the shift of 4’
relative to A

are chosen to be co-moving with the cosmological substratum: we shall say that, at the
cosmic time 7, of the event P,, A’ is stationary with respect to 4 if v, coincides with the
four-velocity of A when parallel-transported to A along the geodesic I'. that joins A’
and A4 in the three-space X, given by ¢ = ¢, (see Fig. 1).
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Here we note without proof that the two definitions of “stationary” given above,
and presumably other equally natural definitions as well, lead to the same result for their
corresponding gravitational and Doppler shifts in the case of small velocities of recession.

3. Calculation of the shifts in a Friedmann universe

With our definitions, it is easy immediately to write down the formulae for the Doppler
and gravitational shifts in a Friedmann universe. Let vy, be the frequency measured
by A’ of a light beam emitted by B with frequency v, let v,., be the frequency measured
by A4 of a light beam emitted by 4’ with frequency v,., and let the subscripts e and a
denote the events of emission and absorption, respectively. Then the cosmological Doppler
shift is given simply by the special relativistic formula

Vear[Vg = [')’e"’(?f_l)uz]_}, 1)
where
Ve = —_(gabu:’ug)e; (2)

and, using the well-known formula [6] for the full cosmological shift vy,/vg = R./R,
(here R(r} is the scale size of the universe at cosmic time #), the cosmological gravitational
shift is given by

Vaalva = (RR)vg[vgy-. €)

The factor vy/vy, in Eq. (3) removes the Doppler component from the full shift.
We shall now compute y.. In the standard coordinates, the metric is given by the
fundamental form [7]

eds® = —dt® + R*(t) [(1 — k&)™ ' dE* + E2d0* + &% sin 0d¢*], €
where ¢ = —1,0, or 1 if the interval dx' is timelike, null, or spacelike, respectively, and
k= —1,0, or 1if the geometry of X is hyperbolic, Euclidean, or spherical, respectively.

In these coordinates, the four-velocity of the comoving observer B is vy = (1,0,0,0),
so, from Eqs (2) and (4),

Ve = (ug)e (5)
To find 4§ we must solve the equation for parallel transport
dul, +Io%u%dx® = 0 (6)
along I',. For I',, dx' = (0, d¢, 0, 0),.so Eq. (6) becomes
duly.(dE+ T u’. = 0. €))

From Eq. (4) we find that the only non-zero I'y is I'), = HR*(1 —k&?)~!, where H = R/R
is Hubble’s constant, so Eq. (7) becomes

dul}.[dE+H RI(1—kE*) ™ 'ub. = 0. )
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Using the relation —1 = —@%)?+ R2uS)*(1—kE?)~! for the components of the unit
vector u',,, we may express 4% in terms of u3 in Eq. (8):
dul.jdé — H R J(u%)Y? —11V*(1—kE»)™'? = 0. 9)

Since u3 = u$ = 1 at the origin ¢ = 0 where we take 4 to be located, the solution to
Eq. (9) is

uy = cosh H.r. (10)
where

r=R[(1-k&)2d¢ amn

© ey e

is the proper distance from the origin out to ¢ as measured along I..
From Egs (1), (5), and (10), then, the cosmological Doppler shift is given by
VBar
= exp(_Here)’ (]2)
Vp
where r, is the proper distance from A to B at the time of the emission at B. The cosmo-
logical gravitational shift, from Eq. (3), is given by

Vaa
= (Re/Ru) exp Hcre' (l 3)
vy
It is easy to see that the cosmological Doppler shift in Eq. (12) has a plausible form.
For in the Friedmann cosmologies the velocity of recession of a point in the substratum
a distance r from the origin is » = dr/dt = Hr, so that Eq. (12) may be rewritten
Vpar 1,2 1.3
— =exp(—v) = 1—v.+50;—¢ U, + ...
Ug
This may be compared with the formula for the Doppler redshift in special relativity for
a velocity of recession v.:
v ,
o T N € I 0 N (R o S ) S R
VB
For the remainder of this section we will discuss the cosmological gravitational shift
given by Eq. (13). It turns out that this shift is always blue and becomes ever larger as
the time of emission becomes earlier.
To see that this is so, we first calculate v . ,/v,- for small distances r,. We write R./R,
as a function of r, by expanding R in a Taylor series; keeping terms to second order in
the expansion velocity H.r.:

P A DT Y AR AN P
: - — r 5 —_— 5
a c € d" ee 2 e d}" . e drz . re

dt . dt \? .
= Re—Re (d—> Here+% [;ReHe_z (7—) +H;1Re(d2t/dr2)e] H?r:‘l‘ cee e (14)
r € r [
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Here r is the variable defined in Eq. (11), and we have used the fact that R = HR. By
Eq. (4), for a photon dt/dr = — R(t)/R.. Then Eq. (14) may be written

R, = R[1+Hr +3(RH’R'+ DHIZ+ ],
so that
R,/R, = | +Hore+1(1—q)HZr + ... (15)

Here g, = —R.R/R} = —R.H;?R;" is the deceleration parameter. Using Eq. (15),
we find that Eq. (13) becomes
V4
A =1 4+d g HY+ L, (16)
YV
so that the cosmological gravitational shift for nearby emitters is blue (g > 0 in all Fried-
mann models with vanishing cosmological constant).
It is easy to show that, for fixed ¢,
d Vaa HezRere

_— T = 24+q.)exp H.r,
dr. v, R, (2+4.) exp

for all r.. Thus, the cosmological gravitational shift is blue for all r,, and the earlier the
time of emission, the bluer the shift.

We now show that Eq. (16) can be understood in terms of Birkhoff’s theorem. Accord-
ing to this theorem, in a Friedmann universe the gravitational field in any sphere within
which the expansion is non-relativistic is simply the Newtonian field due to the matter
within the sphere. Therefore, a photon emitted by a stationary observer 4’ at a distance r,
from an observer A4 at the center of the sphere will undergo a gravitational blueshift
given by

(]
Y4 v 1-6 j M(ryr2dr (17)
Va4

in traveling to 4. Here M(r) is the mass interior to the radius r at the time when the photon
is at the radius r.

The effect of the change of M(r) with time can be neglected, because the expansion
velocity is very much less than the speed of light. We then have M(r) ~ %rpo.3, and
Eq. (17) becomes

vaa ., GMED _

14+22Go,rl. (18)

Vg 2r,

But in a matter-dominated Friedmann universe, $1Gp = gH? (this relation [8] can also
be easily obtained from Birkhoff’s theorem). Thus Eqs (18) and (16) are identical, which
is what we wanted to show.
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Eq. (18) yields a fractional blueshift of 22Go.r2. A photon traveling from the center
to the edge of a homogeneous sphere of radius r, would ‘undergo a redshift of identical
magnitude. This same redshift was obtained by Westervelt [4] in an elegant field-theoretic
calculation of the shift suffered by a photon traveling a distance r, through a static, homog-
encous medium of density g, in a Minkowski background metric. Westervelt suggested
that there might be some connection between his result (which, as he emphasized, was valid
only for a Minkowski background) and the cosmological shift that is actually observed.
Our present paper indicates the connection: for nearby galaxies, the gravitational contribu-
tion to the cosmological shift has precisely the magnitude of Westervelt’s result, although
justification of this result requires Birkhoff’s theorem and the assumption that the emitter
is at the center of a homogeneous, spherical distribution of matter. The sign of Westervelt’s
result is the opposite of ours because his result gives the gravitational shift relative to
the emitter, which is not observable. To find the gravitational shift seen by the absorber,
Birkhoff’s theorem requires us to place the absorber, rather than the emitter, at the center
of the homogeneous spherical distribution of matter, so that we find a blueshift rather
than a redshift.

The author wishes to thank Professor David Park for helpful comments on the draft
of this paper.

REFERENCES

[1}] W. Rindler, Phys. Today 20, no 11, p. 23 (1967).

[2] S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York 1972, p. 417.

[3] G. Birkhoff, Relativity and Modern Physics, Harvard Univ, Press, Cambridge, MA, USA 1923, p. 253;
see also S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York 1972, p. 474; and
W. H. McCrea, E. A. Milne, Q. J. Math. 5, 73 (1934).

[4] P. 1. Westervelt, Acta Phys. Pol. 27, 831 (1965).

[51 J. L. Synge, Relativity: The General Theory, North-Holland Publ. Co., Amsterdam 1966, p. 119.

[6] S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York 1972, p. 416.

[71 S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York 1972, p. 412.

{81 S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York 1972, p. 481.



