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In this paper the influence of a prescribed unquantized gravitational field of suitable
structure on the system of interacting Maxwell-Dirac fields is investigated on the basis of
the § matrix theory.

[. Introduction

Numerous references show that quantum gravitational effects become significant
not only near the Planck length but even at 10-13...10-'% cm so that the cooperative
effects of gravitational and strong (respectively electromagnetic) interactions should not
be neglected [1, 9]. Especially the following question leads to the study of quantum electro-
dynamics in an external gravitational field: The number of photons of the 3K background
radiation surpasses that of heavy particles in the universe by the factor 10%. Since the
creation of photons by gravitational fields occurs at an anisotropic expansion only, this
mechanism of photon production does not seem to be effective enough to explain this
factor. But one can imagine that particle-antiparticle pairs created by the gravitational
field annihilate into photons which are changed into blackbody radiation by scattering
processes. Without elaborating this problem in detail here we investigate the influence
of a prescribed gravitational field of definite structure on a quantized Klein-Gordon
field as well as on isolated and mutually interacting Maxwell-Dirac fields.

Some properties of the fundamental equations of quantum electrodynamics in an
external gravitational field have been discussed in [8]. This system of equations is the
basis for the treatment of the interaction of the Maxwell and Dirac fields by the methods
of perturbation theory and the simultaneous strong consideration of the influence of the
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gravitational field, as shown ih [6, 7]. In what follows we do not intend to consider the
influence of the gravitational field strongly but our goal-is to comprehend the electro-
magnetic as well as the gravitational interaction on the same perturbational basis.

2. Suppositions for the S matrix theory

In the conventional quantum electrodynamics coupled quantized Maxwell-Dirae
fields are the subject of the dynamical evolution. Moreover the Minkowski spacetime
plays the role of a background field to which the “in” and “out” states in the remote
past and future are referred. The interaction is described by the evaluation of transition
amplitudes with the aid of the S matrix that projects the states of an interaction-free
ensemble of particles at the time t - —oo to one at the time 7 —» +o00. We want to attain
that even under consideration of the gravitational field the fields are free of any interaction
for large spacelike and timelike distances, this implies asymptotically a Poincaré invariant
ground state and the interaction of one quantum field with the other and with the gravita-
tional field can be described as a scattering process of plane waves. The consequence is
a far reaching restriction of admissible metrics, namely:

lim g, (x%t) =n,, at every point x°, (2.1a)
t—> o
lim g, (x%1t) =4, atevery time t. (2.1b)
x%>tw

Especially by this restriction we attained that the “in”” and ‘“‘out” operators represent
creation and annihilation operators for physical particles which are associated to free
fields. Therefore we do not need the concept of an “occupation number operator in an
external field” (concerning the problems referring to this see e.g. [4]).

For isolated quantum fields (with respect to each other) the very restricting conditions
(2.1) have been weakened [12, 13] but the interaction of these quantum fields with the
external gravitational field can nevertheless be treated on the basis of perturbation theory.

As examples of gravitational fields obeying the properties (2.1) we quote:

i) Weak gravitational fields:

Buv = Nyt KAy ', (2.:2a)
g = 9" —kh" (2.2b)
satisfying the conditions
lguv_rluvi < 1’ (23)
lim h,(x%t) =0 at every point x° (2.4a)
t—>tec
and
lim h,(x%t) =0 at every time t. (2.4b)
xe— 1t o

' x = Kohc, ko Einsteinian gravitational constant.
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Instead of the field A,, we will use often the field

S = hyy—5 hm,y (b = n"h,,). (2.5)

A special case of (2.2) is the linearised Schwarzschild metric

mn ~44 ¢ M
=0, ff=—f=0—. (2.6)
2nh r
In this case the condition (2.3) corresponds to
KoMc? 27
> —. .
4r )
For further calculations we notice the Fourier transform of f:
c ow,)
fle) = — —M—%. (2.8)
nh q

Here the delta function expresses the fact that the Schwarzschild metric is static.

if) Special Robertson-Walker metrics: Weak gravitational fields are not the only
ones that permit a perturbational treatment in the way outlined above. Robertson-Walker
metrics with flat space sections,

ds? = Q1) (dx* +dy* +dz?)— dr, (2.9)
are also suitable for that purpose if one takes care that Q(¢) becomes asymptotically static,
lim Q1) = 1. (2.10)

t—toc

Robertson-Walker models with this property are of methodological interest only and
do not allow to make any statement concerning cosmological models with an initial
singuiarity, of course. In the following we will perform our investigations for arbitrary
functions €(r) satisfying the condition (2.10) but often we will specialize the resulits to
a piecewise static course of expansion:

1 for —o0 <t < —1,
Q1) = gconst > | for —(1—¢) <t < (t—8&), (2.11)
] for 1 <t < 0.

(In the intervals —t < r < —(1-—-¢) and (t—¢) < 7 < 7 the expansion should be adiabatic
and ¢ < 27 holds.)

3. Preliminary study: the Klein-Gordon field

We begin with a perturbational treatment of the influence of an external gravitational
field of the type (2.2) on a quantized real Klein-Gordon field. Our first goal is to determine
the Lagrangian for the coupling of the Klein-Gordon field to the gravitational field. For



668

this purpose we expand Lagrangians of the type

"(’p = "g(UQ’ U.Q,d" guva guv,g) (3'])

in powers of x using the metric (2.2) for g,, and obtain

0.7 K
Z(g) = L)+ Khy, = L)~ — T"(mh,,. 3.2)
5guv k=0 2
From this we read off
K
Loy = — 5 T (mh,,. (3.3)

Especially for the Klein-Gordon field we get

xey K h?
Lim = ER.

mac?

(f’”¢,u¢,v +3 i f¢2> , (3.4)

and the corresponding inhomogeneous Klein-Gordon equation reads

mac?

r’ﬂv¢,u,v— M‘I_ZA ¢ = Kh”v¢,u,v' (3'5)

As explained in Chapter 2 all the effects depending on the curvature of spacetime are
introduced as perturbations on the background of the flat spacetime. Accordingly the
Klein-Gordon operator formed with the Minkowski background metric occurs on the
left hand side of (3.5) and the source term on the right is proportional to the coupling
constant k [3].

Following the method by Yang and Feldman [14, 5] we determine the S matrix
corresponding to this inhomogeneous Klein-Gordon equation in the Heisenberg picture.
This pertuibational treatment with respect to the gravitational interaction is permitted
under the suppositions made here because the latter is much weaker than the electro-
magnetic one. Following this method we obtain for the S matrix up to the first order in x
(S = 1+xSM)

ihw _ o me? . i - )
S=1+-— jd““x [f‘”¢f3¢fi‘+% —3 f(¢”‘)"] =1+ = Jd“"xe‘fﬁm- (3.6)
2mge h he
This S matrix describes the influence of a weak external gravitational field (2.2) on the
Klein-Gordon field in terms of scattering of plane waves. If we drop the restriction to
weak gravitational fields and consider e.g. the line element (2.9) in its conformally invariant
form,
ds? = Q*(t) (dx* +dy* +dz* —c2dr?), (3.7)

it is possible by means of a conformal transformation [15] to take the Klein-Gordon
equation to the form

mn 1 i gt mgcz g
f?rl ¢,m,n—£?¢“ hz ¢=0
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with @ = Q¢, dt = Qdt and ¢' = 0¢/0t. With regard to (3.5) we write down this equation
in the form

mn J 1 e mécz = mn 7 1 T
n ¢,m,n_ zi ¢ - hz ¢ = A2 n ¢,m,n_ C_i ¢ (383)
with
A, =1 ! 04, <1 3.8b)
2=l e 0<M<L G

In this case the perturbation expansion is accomplished in terms of the (generally time
dependent) coupling parameter 4, and yields up to the first order in A,

i mge
S=1— — -2

: f 19%A,() [#" )T (3.9)

Already here we refer to the proportionality of the A, term to the particle mass. Between
the $ matrix terms (3.6) and (3.9) there exists a formal correspondence in so far as it is
possible to obtain (3.9) from (3.6) by the substitution

4,
K
AZ(wq)
K

fuv = nuva (3103)

ful@) = —Q2n)*? (M- (3.10b)

The delta function in (3.10b) reflects the flatness of the space sections of spacetime
(compare (2.8)).

4. The Maxwell-Dirac system

i) The Mexwell field. The Lagrangian of the Maxwell field has a simpler structure
than (3.1) on what account we obtain directly the following term corresponding to (3.3):

K
o = 5 1 =3 1) BBy 4.1

This Lagrangian describes the influence of a gravitational field of the type (2.2) on the
Maxwell field.
ii) The Dirac field. The Dirac field requires a special investigation because the La-
grangian
he T _ _ myc _
2% = - s [w?“w;,,—%,v“w+2 - w] (4.2)
does not have the simple structure (3.1). As in [2] we express the covariant bispinorial
derivatives in (4.2) by the constant Dirac matrices y,,, of the Minkowski spacetime and
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by the tetrad fields 4, occurring in the equations
Yu = lu(V)y(vb gua = 'lu(V)’lg(K)n(v)(K)' (43)
Then we expand the tetrad fields in powers of x,
My = 1+ 1k (4.4)
and comparing (4.3) with (2.2) we obtain
hte = _ofe)

having used the notations [2]
kHe = n(x)uk(x)e, ket = n(K)"k(K)".

For the Dirac matrices the expansion (4.4) corresponds to

Y=y, =ty (4.5)
0 1 0 1
with
yu = nu(V)Y(v)7 yu = _kugvg’ y“ = keu’))g'
0 1 0 1 o]

With this we obtain from (4.2) (m = myc/h)
D) Khe vie 1 g, viY (= - N ev . In
Lin = — 5 [ =z /n )(wsz,rw,mw)+w(~mf+k ) nggl)w]-
0

It can be attained by tetrad rotations that k** becomes symmetric and the Lagrangian
describing the influence of an external gravitational field (2.2) on the Dirac field reduces to

xhe

(D) wvy— = mec K v
gim = f (U’?JP,,‘ _w,uva) + fll”/) = —-—T (”)huv (46)
4 ’ ; n v 2

Thus it is shown that we can get for all the three fields treated in this paper the simple
expression (3.3) for Z,,,.

iii) The interaction term of quantum electrodynamics. The interaction between the
Maxwell and Dirac fields is described by

LED = iy \[g 8Py, Ay

From this we get with the aid of the expansions (2.2) and (4.5)
iegk
LOED) . p(QED) | pQED) — j, 5y Ap— TO BE A1) A, 4.7)
0 0 0

Thus the system of interacting Maxwell-Dirac fields which in their turn are influenced
by an external gravitational field of the type (2.2) is described by the Lagrangian
(compare [11])

P = [g(M)(n)+g(D)(’7)]+$(tot)

int



671
with
L = LW+ LR+ L
From this Lagrangian results the following fundamental system of equations of quantum
electrodynamics in an external gravitational field of the type (2.2):

u moc

N _ ieg . K Iz +mocf
zw’” n v flc?; W Z”w’” 7Y

i
-3 eok(Z Y+ 7)A,w, (4.8a)
0 0

and

v Po e (e gox e .,v 4o ieOK-l 0 ov,
A% v = ey W—K(z rxa-A “+h ¢ ,VA )+ T W(_ff‘y- +f\ )’v)'/’ (48b)
4] 4] 4]
with
(”I—gv = % (h”Q,V+ Ilu\’,Q - hQV,”)'

5. The S matrix for the Maxwell-Dirac system

First of all we notice that from the system (4.8) result two decoupled equations for
e, = 0 which describe the influence of the external gravitational field on the quantized
Maxwell (respectively Dirac) field. It is possible to apply the method by Yang and
Feldman to each of these two equations in the same way as to (3.5). In both cases the
result is given up to the first order in k by

ix i
S=1~ 27“; J-d(4)iTuv(n)huv =1+ il—c J\d(“fgint’ (51)

where we have to put in the expressions (4.1) (respectively (4.6)) for #;... We notice the
analogy of (5.1) with the S matrix of the conventional quantum electrodynamics:
i

S=1+ -f—l—J'd“‘)Xj“A“ =1+ 5 Jd(“)gg(lQED).
ic

C

We determine the S matrix belonging to the complete system (4.8) with the aid of a time-
-dependent unitary transformation U in the same way as in the usual quantum electro-
dynamics [5]. For the solution of the equations for U arising by substitution of

p = u—lwinu’ u,a - 0, 111' = u_l,
A, =Uu'4M
into (4.8) we make the ansatz
o i
= U= & fdmxi”ﬁ,‘f)(x). (5.2)
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After tedious calculations one finds that this ansatz solves the equations for U. A difference
to conventional quantum electrodynamics is that we have-to pay attention to the fact
that the interaction term (4.6) in %%, contains derivatives of the fields; therefore we have
to modify the equal time anticommutation relations for the Dirac field to the form

{M (Z“— l;-fy) w(f)} = —id(x, %).

We integrate the ansatz (5.2) with the initial condition 2(—o0) = 1 and obtain by iteration
for § = U(40)

S=1+ hicj dYRL R — (7—)~ J dx j d(ct)J dVXLEND L), (5.3)

Since the second integrand in (5.3) is time ordered we can write it restricting ourselves
to terms proportional to ey, ¥ and ek in the form

F(%, ) = P{[LM(®)+LQ(®)]L (%)} + P{LE(x) [2M() + 220

int

with F(x, x) = F(x, x). Because of this property we are allowed to change the boundaries
in the second integral of (5.3) and obtain [5]

int

§=1+ jd“"x-?f:’."(x) 35 Jd“"“Jd<4>35_f£“°‘>(x)$“°‘)(x).

In this way the following double series in e, and k results for the S matrix in question?:

=1-

— 2o | axpyra,y (5.42)
he ¥ :
iK _ - —

+ de[f ey — ) + mfyy] (5.4b)

+ 37 J A5[f**B"pBa =3 /BB ] (5.4¢)

C

€k s N [,

+ e dxyp(z "+ )AL (5.4
iegk

She f s f dxP{Lf* 1.~ 0. 0) + mfpy TP AGIWGE)  (S40)

2 In these terms occur the fields tpi“, Am etc. The superscript “in” as well as the index ,,0° of
the Dirac matrices have been omitted for formal clearness.



673

iegK

STc de JdiP{@(f)v"Ag(f)w(f) LFCprey = v w)+mfpy]l (540

42;0'; ax fde{[ faﬂ BB, % fB* B,,v];p—(i)’)’o Ae(—;) 7#’(;)} (5.49)
- 42032 J dz J dZP{PERP ARV [f?B*Bo—2 BB, 1} (5.4h)

In order to obtain the system of equations of quantum electrodynamics analogous to (4.8)
for a metric of the type (3.7) we start from the generally covariant wave equation with
the Dirac current and the generally covariant Dirac equation with electromagnetic field.
From this we get by conformal transformations the equations

A", = ieg(1434)py'y (5.52)
0
and
it ™y = 1 g
Zw,u 5 ¥ hvuw 1hw (5.5b)

The parameter A, given by

1
Ay =1—-—, 0<4,<1
! 10 S
is adapted to the Dirac equation with its first order derivatives and consequently the coupling
by the factor 34, in (5.5a) is an additional approximation. The promptest way to obtain
the corresponding S matrix is that of the formal substitution (3.10a) with A4, in place
of A, which gives

S=1-

e [ o 4

~ e ] dxyy* A,y (5.62)

—im [ d%A4,()ypy (5.6b)
3eo [ - —

- — | XA, (Dyy Ay (5.6¢)
he

+ l;;lm jdx/l 10) fde DR P 4,0 p(x)} (5.6d)
zeom
Yo de f dx A, (PPN AR pE@p)v(x)}. (5.6¢)

In (5.6b, d, €) we made use of the fact that the fields v and ™ fulfil the homogeneous
Dirac equation. The proportionality to m, which came about during this procedure is
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a consequence of the conformal invariance of the massless Dirac equation. The following
properties of the S matrix terms (5.4) and (5.6) are obvious:

i) In the form of (5.4a) (respectively (5.6a)) the conventional quantum electrodynamics
results up to the first order for k = 0, (A, = 0);

ii) For e, = 0 the Maxwell and Dirac fields decouple and analogously to (3.6) the
influence of the external gravitational field on each of these two fields remains in the
form of (5.4b, ¢);

iii) Proportional to egx (eqA;) there occur both processes of first order, (5.4d) and
(5.6¢), and of second order, namely (5.4e...h) and (5.6d, e);

iv) For conformally flat metrics /"' ~ #** holds. Therefore the terms (5.4c, g, h)
disappear, that is to say the Maxwell field which is isolated from the Dirac field does not
couple to conformally flat gravitational fields. Accordingly the terms (5.4c, g, h) have no
counterpart in (5.6).

6. Evaluation of the S matrix with the aid of Wick’s theorem

The processes occurring in (5.4d...h) represent the corrections to the processes in
(5.4a) arising from the gravitational field ((5.6¢...¢) likewise). In order to make the content
of the S matrix in terms (5.4d...h) (1espectively (5.6c...e)) accessible we have to decompose
them with the aid of Wick’s theorem [5] into a sum of normal products such that the
operators on the right in each term of the sum annihilate the particles of the initial state
and those on the left create the particles of the final state. In comparison with the conven-
tional quantum electrodynamics two peculiarities occur in the present case: (i) Not only
one graph but a whole series of graphs contribute to a definite matrix element, namely
one from each of the terms (5.4d...h) (respectively (5.6¢...e)); (i) One has to form not
only contractions between the operators but also between the operators and their derivatives.
The latter result in the same way as the analogous expressions in meson electro-
dynamics [10]:

<0, in|T[9™ (x)p'"(%)] [0, in) = —; 8,SF(x —x),

<0, inj T[y™(x)p™ ,(%)] 10, in> = -%6;,8"”(x—5c‘),
and

<0, in|T[A™, (x)A(%)] 10, in) = — :th 1,000 (x —%).

7. Summary

In the simplest case the perturbational treatment of the influence of the gravitational
field on quantized fields is restricted to metrics which permit the introduction of the
gravitationally induced effects on the background of flat spacetime. For mutually isolated
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quantum fields the construction of the S matrix follows the method by Yang and Feldman.
Restricting to the first order in the coupling constant x for all the fields under consideration
we get

iK
S=1—— | d¥xT*(h,,.
2hc,[ xT*(n)h,,

The S matrix for the interaction of quantized fields with each other and with the external
gravitational field constructed with the aid of a time dependent unitary transformation
is a double series in the coupling constants e, and k. Proportional to eyk there are first
order processes as well as second order ones. Since the corresponding interaction Lagrangian
contains derivatives of the fields we have to form contractions between the operators
and their derivatives, too. While in conventional quantum electrodynamics to each matrix -
element corresponds one Feynman graph, in the present case to each process contributes
a whole seties of graphs. The method allows in principle to evaluate each process to any
desired order.

From the S matrix formalism it results clearly that no interaction takes place between
massless particles and those gravitational fields which are described by conformally flat
line elements. In this case the terms (5.4c) and (5.6b) disappear for m, = 0 and the
S matrix (3.9) reduces to S = 1.
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