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The S matrix constructed in Part I of this work is evaluated for processes- which it
includes. Some of them are discussed in more detail: pair creation and scattering in an
external gravitational field, pair creation by a photon and creation of an electron-positron
pair and a photon in an external gravitational field.

1. Introduction

With the construction of the S matrix terms (formulae (3.6), (3.9), (5.4) and (5.6)
of the previous paper in this issue, hereafter referred to as I) the foundations are laid
down for the study of the influence of an external gravitational field on quantum electro-
dynamical processes. The basis for the evaluation of these terms are gravitational fields
in which quantized flelds are in a flat spacetime for large spacelike and timelike distances.
Now we turn to the evaluation of the S matrix for processes which it includes. In
the course of these calculations we substitute for the “in”-operators the expansions
(A.1)—(A.3) familiar from the Minkowski spacetime.

2. The meson effects

Substituting the expansion (A.1) into the S matrix (I-3.6) and normalizing the operator
products one sees that the following processes are contained in (I-3.6) (the external gravita-

a) }) b) 8 c) R

Fig. 1. Feynman diagrams for a) scattering, b) pair creation and c) pair annihilation of mesons in an external
gravitational field
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tional field is symbolized by a circle and the external electromagnetic field by a cross; the
time direction points out from below to above; all other conventions are as usual, see e.g. [2])
The calculation of the transition amplitudes {final [S| initial) in momentum space leads
to the following results:

for scattering (Fig. 1a)

" atl) ic 1 " v , , mac? ,
KNSk = r T S~k Kk, + -iﬁ»z—f(k—k) 2.1
[ aad M
and for pair creation (Fig. 1b)
aDin ic 1 B v , , mac? ,
{kk'1S*’10, in) = ™ T L—j (k+K)k,k,+ ThE Jk+k)|. 2.2)
[ Aad

(The matrix element for the annihilation process simply follows from (2.2) by substituting
—(k+k') into the arguments of f** and f.) If we specialize these transition amplitudes
to the case of a weak Schwarzschild field with the aid of (I-2.8) we get

. 2 2 2.2

iSOy = — Ly & M 2T damen) (), Te) (g
Brn) h w, w;—mc ., 0 h

sin” -

and
1 & M 20F—m?c® 3w, +oy)

kk'iS"0,in) = — —— —
CkKIST0, in 8n)* h w, o} -mi?

. (2.4)

cos? -
2

The argument of the delta function in (2.4) means that no pair creation can occur in a weak
Schwarzschild field. In the framework of the S matrix theory this is a confirmation of
the general perception that particles cannot be created by static gravitational fields. The
delta function in (2.3) expresses the conservation of energy which has to be guaranteed
because of the connection between invariance properties and conservation laws, of course,
and which is the reason for the non-occurrence of pair creation.

Now we turn to the Robertson-Walker metrics (I-2.9) (respectively (I-3.7)). Instead
of beginning directly with (2.1) (respectively (2.2)) using (I-3.10), we go back to the S
matrix term (I-3.9) and, moreover, we consider the case of a stepwise expansion as given
in (I-2.11). With the aid of the Fourier expansion (A.1) we obtain the S matrix up to the
first order in A3 (the superscript “0” shall indicate that in this model A, is stepwise
constant) for the line element (I-3.7)!

i mact
2 h?

T sin 2wt
A9 f d®k l} (atay+ aal)+ = (aka_k+a,taf_k)]. (2.5)
Wy 2005

S=1-

! The indices “in” at a;;“ etc. have been omitted for the sake of clearness.
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If we start with the minimally coupled Klein-Gordon equation instead of the conformally
invariant one, we get

.2
S=1-25 49 j dPkk? [i (@la,+aad)+ SN2 (aa +alat k)]. (2.6)
2 Wy, 20}
The main difference between these two expressions is that (2.5) is proportional to the
mass m, and (2.6) is not. The operator combinations occurring in (2.5)and (2.6) again
indicate the processes represented in Fig. 1. Since particle creation can take place, the
creation and annihilation operators for t - —oo (a}™®, @i") and t - + o0 (al*™, af™) differ
but have to fulfil the same commutation relations. This difference between the operators
is expressed by the S matrix:

" = S71gins, (2.72)
If we compare with the Bogoljubov transformation [6]
a™ = aai*+ patty, (2.7b)
we see that the relation
“k“;—ﬁkﬁf = 0y (2.8a)
holding between the Bogoljubov coefficients «, and B,, corresponds to the condition
[S™'ars, Stati"(§™ )] = 8, (2.8b)

for the S matrix. This condition can be fulfilled only if the S matrix is unitary, ST = S-1.
With S = 1+ 4,5 we get the connection between the S matrix and the Bogoljubov
coefficients from (2.7),

im ¢t sin 2wt
§ AL[[S©, = 9 A0 ko 2.9
ﬁk 4 [[ a ] ak 2h2 2 CD,% ( )
2 = 1— E A[[SD, ait], "] = 1— 2% imoc o T (2.10)
R 0

-
where the results containing A9 are valid for the S matrix (2.5). With the aid of these
results we can represent the transition amplitudes for the processes given in Fig, 1, which
could have been derived directly from (2.1) (respectively (2.2)), too, in the following
manner:

meson scattering:

AN 5(0, in|S10, in)dy,, 211
k

pair creation:

CkK'1S10, in> = é"— <0. in]S|0, in>& _4-. (2.12)

k
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If we denote by P, and P, the probabilities for pair creation and scattering in the mode k,

B

Oy

2 2

1

O

P =

<

and P, =

holds and the relation (2.8a) corresponds to P, = 1-P, which is compatible with
0< P, P, < 1. Consequently scattering may be accompanied by pair creation in the
same state.

The delta function in (2.11) and (2.12) expresses the conservation of momentum
which has to be guaranteed because the spatial sections of the line elements (I-2.9) and
(I-3.7) are Euclidean ones. The matrix element (2.11) gives the probability for the tran-
sition of the state |k) into |k’> caused by an expansion like (I-2.11). This probability
is the larger the longer the expanded state lasts. This makes clear the proportionality
to 7 in (2.10).

Finally we notice that on the basis of the relations (2.7) it is possible to represent
the complete S matrix for the influence of a gravitational field of the type (I-2.9) on a quan-
tized Klein-Gordon field in terms of the Bogoljubov coefficients o, and B,. With the aid
of the representation

o = €7 cosh9, and B, =e"sinhd, (¥ =7y,+7p) (2.13)

of (2.8) and referring to Kamefuchi and Umezawa [3] we can write (compare [6])

i . .
S = exp [—2— Jd(3)kya(atka-k+akaz)] exp [+ § dPk9(e"at af —e Maa_)].

From (2.13) and (2.9), (2.10) the first two terms of the power series expansion in A3 of
this expression lead directly to (2.6). The applicability of the S matrix method carried
out up to this point is not restricted to an isotropic expansion as (I-2.9). Without consider-
able difficulties one can generalize the method to an anisotropic expansion

ds? = Q()dx*+Q3(t)dy® + QX (H)dz* — c2dr?, (2.14)

where each of the functions Q,(r) has to fulfil the condition (I-2.10). If we assume that the
expansion is stepwise in all the three directions as in (I~2.11) and that it begins and ends
simultaneously for all directions, then we obtain for the Bogoljubov coefficient 8, describ-
ing the particle creation

3

ic? sin 2w,7 2 mac?
B = b o E A7, [(k2—3ki)+ —h—z] >

i=1

which coincides with (2.9) in the isotropic case. Obviously, in the anisotropic case mass-
less particles described by the conformally invariant Klein-Gordon equation can be
created, too.
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3. The electron-positron processes

The processes illustrated in the following refer to the influence of an external gravita-
tional field on a Dirac field which is isolated from the Maxwell field. We go back to the S
matrix terms (I-5.4b) and (I-5.6b). These terms are composed of the following processes:

a) }) b) g c) /Q\

Fig. 2. Feynman diagrams for a) scattering of an electron, b) electron-positron pair creation, c) electron-
-positron pair annihilation in an external gravitational field

We do not enter into the process of positron scattering. Using the expansions (A.2) we
obtain the two essential matrix elements: electron scattering (Fig. 2a):

’ 1 o1} _ ic —=(1,d7), 1 uy, N
(+H, 0, d18YV 1+, p, d) = — —=u""(p) [ -f*(p—D")
8w V/wpwp,
Xy (Put P +imf(p— p) ] (p), (3.1)
pair creation (Fig. 2b):
’ (1) : ic 1 —=(1.d) Hy, ’
(+.p,d; —,p,dSV0,in) = — —=a"(p) [["(p+P)
8n \/a)pwp,
X 7(pu— i) +imf(p+ pYJu ™ (p"). (3.2)

In the case of the weak Schwarzschild field the following expressions result from
the preceding ones:

iMc dw,+w,)
S ( P 14 ﬁ(l'd)(p)
32rhp ,0
CO

(+,p.d; —, p,d|SP)0,in) =

[—2y4+ ﬂf] WL gy (3.3)
w

p

and

Mc ¥w,—wy)

(+, 0, d1SP+,p,dy =

 Rqhp? L0
sin? —
2
N, ime
x izt )(p)[—2y4+ — ]u(l’d)(l’). G4
14

As expected the result (3.3) means that no electron-positron pair creation can occur in
the weak Schwarzschild field.
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If we consider the Robertson-Walker line element (I-3.7) we get for the case of
a stepwise expansion, by substituting the operator expansions for the Dirac field into

(1-5.6b)
2mt
S = 1—imc*A} Id(3)P E [a)_ (b} abpa+dyadb )
p
3

+ 2 sin 2w,,1(b;,,,d*_,,,_d+d_p,_db,,,d)] . (3.5)

p

The connection between the S matrix and the Bogoljubov transformation yields
by = S7'b"S = o bin+ Bdtin (3.6)

Taking into account the anticommutation relations for the operators of the Dirac field
we obtain the Bogoljubov coefficients up to the first order in /II:

A
?A {8, .7, diy = —i “22X gin 20,1, 3.7
P
. . 2im?A%zc?
o =1- g A{[SY, B, bE} = 1- —— = (3.8)
P

g

The expressions containing AJ refer to the S matrix (3.5) with a stepwise expansion.
As in the case of the Klein-Gordon field we can represent the matrix elements (3.1) and
(3.2) for Robertson-Walker metrics of the type (I-3.7) in the following manner:
electron scattering:

1
<+’ p,a d,|S[ +, D, d> = ; <01 lnlSIO, in>5dd'5(p_p,): (39)
k

electron-positron pair creation:

{(+,p.d; —, p,d1S]0,in) = %‘— <0, in{S|0, in)dy _6(p+p). (3.10)
k
From this it is obvious that the probability for scattering (respectively pair creation) in
one mode does not depend on what happens in other modes. By (3.9) again a forward
scattering process is described. In connection with (3.10) the relation (3.7) means that
in the case of an isotropic expansion no massless Dirac-particles (neutrinos) can be created
(cp. (2.9) for m, = 0). By considerations parallel to the Klein-Gordon field one can show
that in the case of the Dirac field, scattering in a definite mode cannot be accompanied
by pair creation in the same mode.
Unlike in (2.13) the anticommutator relations for the Dirac field can be represented
by a real rotation in momentum space,

a =cos9, and B, = ®sind,.
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Relying on investigations by Umezawa, Takahashi and Kamefuchi [9] we can give the
complete S matrix in (3.6) the form

S = exp [—Zij'd‘”pzd:(SlT‘-{-SzTg]. 3.11)

Therein we have used the abbreviations
27, = blrdtis +dblr, 2T, = di*dt'y + btigpi
and
9% = 924+93, 9,—i8, = 9e.

If we determine 3 and ¢ from (3.7) and (3.8), the power series expansion of (3.11) up to
the first order in A, coincides with (3.5).
After tedious calculations we obtain for an anisotropic expansion the result

2

ct @ 1 ,

B = 5 Sin 20’,;‘5{ £ T [PP:PZ(A(z).x “A(1),1)+1P%P3d(/1(1),1_/1g,1)
wp mpc \/P1+P2

. im ipm
+'P§P3d(/lg,1"/1(3),1)]“ 35 E A21@2‘3Pi2)“ - E A?,l}‘
p . 3 N
L i

This result says that Dirac neutrinos (m = 0) can be created by anisotropically expanding
gravitational fields. In the isotropic case this expression reduces to (3.7).

4. The photon effects

The S matrix term (I-5.4c) contains the following processes:

al b) H/LLOE c) y\l\l\Q’H/L

Fig. 3. Feynman graphs for a) scattering, b) pair creation and ¢) pair annihilation of photons in an external
gravitational field

With the aid of (A.3) the matrix elements belonging to these processes can be proved
to be:
for the photon scattering (Fig. 3a):

ic
@ny* \/ WL
x e¥ NI Yk, — % fk — K )P (k)K" 4.1

K, ViSWik, Ay =

i)k f(k—K')
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and for photon creation (Fig. 3b):

Kk, A K, 2 1SM)0,in) = DBk [P (k+K)

ic 1
@0’ Voo,
x e Kk — 5 f(k+ k)" M (k)k']. (4.2)
From this the following specializations result for the weak Schwarzschild field:
for the photon creation

2

Ck, Ay k', A 1SM0,in) = — c—(]\;) *P)e} KV (o + ) (4.3)
k

and for the scattering process
.2
—— g
wn(2n)?

This shows that the quanta of the considered fields are not created by static gravitational
fields.

Concerning the Robertson-Walker metrics we remarked already in I that in (I-5.6)
no term analogous to (I-5.4c) occurs. But if the expansion is anisotropic as in (2.14) we

obtain
g — —ic? (— 1y S 20 sin 2wt —z : Agz(k2—3ki2)] ’
wk |

i

K, VISV, 2> = — HA(K)e >(k)cot2 5(wk+wk) (4.4)

and in the isotropic case 8, = 0 follows correctly. Consequently, anisotropic expansion
can cause important direction-dependent effects of particle creation or it can make it
possible at all. We close this chapter comparing the matiix elements (2.3), (3.4) and (4.4)
for scattering in the weak Schwarzschild field. From these matrix elements we obtain
the following cross sections:

for mesons:
waM*c*
do = (_27027 (k% +m?) 5 (4.5a)
c 47
sin >
for electrons:
2a42 4 4 2.2
KoM~c s 20 m m’p .0 dQ
do = — i -+ — 143 — , 4.5b
o (4n)2p4[pc082+4+ 2\ 1F3cos”S 0 (4.5b)
sin® -
2
and for photons:
2M2 4 9
do = = c~ cot* - dQ. (4.5¢)
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These cross sections have been given already by Mitskievich [5], but under specialization
to the Schwarzschild field from the beginning, while we have. derived them from a more
general viewpoint including particle creation. For a vanishing rest mass of the particles
and small deviation angles the same cross section results for all the particles considered,

KAM2c* dQ

o=y b
(4m) sin® —
2

exhibiting the characteristic angle dependence of Rutherford’s scattering formula. This
result has to be expected because the static Schwarzschild field is the analog of the Coulomb
field in electrodynamics.

In connection with the gravitational lens property of black holes during the last
years classical cross sections have been evaluated on the basis of the geodesic equation [1, 8]
which coincide with those given here. This is remarkable in so far as the derivation of the
cross sections (4.5) is based on the idea of a wave field extended over the whole space
while the classical results emerge from the concept of strongly localized rays (particle
trajectories).

5. Corrections to the conventional quantum electrodynamics

The S matrix terms (I-5.4d...h) contain numerous processes which are all specified
and discussed in [4].

As is well known, the term (I-5.4a) consists of 12 processes if one allows for a classical
electromagnetic field apart from a quantized one. The symmetries of the Minkowski
spacetime require the simultaneous fulfilment of the conservation laws for energy and
momentum on what account nearly all of the 12 processes are forbidden in the conventional
quantum electrodynamics. Because we did not presume any symmetries in the general
ansatz for f*” we can expect that in a general external gravitational field all processes are
allowed. In the special case of the Schwarzschild metric only the energy conservation
law has to be fulfilled (static metric) while the purely time dependent Robertson-Walker
metrics with Euclidean 3-space require conservation of the momentum only, but not
of the energy. Here we select only two processes which show the character of the correc-
tions to the conventional quantum electrodynamics coming from the gravitational field.

A e

Fig. 4a. Pair creation by a photon in an external gravitational field

Example No. 1
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In general each of the S matrix terms (I-5.4d...h) contributes to this process, especially
the process d} of first order. The corresponding process -in the conventional quantum
electrodynamics is [2]:

Fig. 4b. Pair creation by a photon in an external (time independent) electromagnetic field (cp. Fig. 4a,
processes e, f)

The corresponding matrix element {+, p, d; —, p', d'|S|k, 2> has essentially the following
structure:
Fig. 4a: Processes (e), (f) for Robertson-Walker metrics with stepwise expansion:

sin (@, + 0, — @)t

{+,p,d; —, p',d'|Slk, Ay ~ epA] S(k—p—r);

Wyt 0y —wy
Fig. 4b: Time independent external electromagnetic field:
{+,p,d; —,p,dSk, 2> ~ eﬁA;"'(k—p—-p')(S(wk——cop—cap,).

From this the following can be read off: the process of pair creation by a photon occurs
first in the second order of e, in the conventional quantum electrodynamics, but with
an external gravitational field it exists already as a first order process in eyk, because
the graph (d) of Fig. 4a contributes a nonvanishing term to the matrix element [4].

oy e

Fig. 5. Creation of an electron-positron pair and a photon in an external gravitational field

Example No. 2

For a stepwise isotropic expansion (conformally flat metric) the corresponding matrix
element reads [4]:
eome

<+:P, d; _aP’, d’;ka AISIO’ 1n> o s
h\/Zwka)pmp.

o(p+p +k)

sin (w,+w, + )T

20,7, ’ k . @, k _
a“""(p)[6—~im WA Am L, TR, m]

W, + 0y + @ (' +k)’+m? (p+k)Y*+m?

X e W (p).
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We restrict our discussion to conformally flat gravitational fields in which the graphs (g)
and (h) of Fig. 5 give no contribution to the matrix element and in which, as is well known,
no photons can be created according to (I-5.4c). It is an important result that the graphs
(d)...(f) give nonvanishing contributions such that photons can be created by conformally
flat gravitational fields too but only together with an electron-positron pair. In this sense
we can speak of a “catalysing” effect of the Dirac field with respect to photon creation.
This effect has to be expected because the coupling of the Maxwell-Dirac fields takes
place by means of the charge which always is linked to the mass at one hand, and the
gravitational field affects the electron mass (cp. (3.7)) at the other hand. In this way photons.
are coupled to the electron mass by means of the charge and thus are subjected to the
influence even of conformally flat gravitational fields. Consequently, the process given
by Fig. 5 explains a further possibility of photon creation by gravitational fields.

Of course (I-5.4) contains the following process, too (see Introduction to I):

Fig. 6. Annihilation into a photon of an electron-positron pair which has been created by a gravitational
field

6. Summary

A. Mutually isolated quantum fields under the influence of an external gravitational
field

i) The S matrix theory shows with peculiar clearness that conformally flat gravita-
tional fields do not create particles which are described by conformally invariant field
equations. Moreover, in the framework of the considered models and approximations
the S matrix theory confirms all exact results.

ii) The unitarity of the S matrix is strongly connected with the Bogoljubov trans-
formation which in its turn is tied with the statistics belonging to the spin under considera-
tion. Corresponding to this, scattering in a definite mode can be accompanied by pair
creation in the same mode in the case of bosons and not in the case of fermions. The
complete S matrix can be expressed by the Bogoljubov coefficients.

iii) Particles are created in pairs in so far as we consider mutually isolated quantum
fields.

iv) The quantum field theoretic cross sections evaluated for the deviation of massless
mesons and photons in the weak Schwarzschild field coincide with the classical ones.
B. Interacting quantum fields under the influence of an external gravitational field

i) Because an external gravitational field generally does not admit the Poincaré
group as its symmetry group those processes which are forbidden in the Minkowski
space-time are allowed in the general case.
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i) Processes which occur in the conventional quantum electrodynamics first in the
second order are already possible in the first order if an external gravitational field is
present.

iif) If the electromagnetic field couples with a Dirac current conformally flat gravita-
tional fields can create photons.

APPENDIX

The S matrix terms (I-3.9), (I-5.4) and (I-5.6) describe the scattering of plane waves
such that for the operators ™", A", v'® and p™ the following operator expansions have
to be inserted:

Klein-Gordon field:

meC ¢ ) )
¢ = j d®k \/ 2—; . [aue™ ™ +afuy ] (A.D)
k
with
1/2 2
w _ w
u, = 2n)~? (_E> e ?'f- = k*+m?
c
Dirac field:
+1 ) )
p= Y [d¥p[bae™ ™" +dlve ], (A2)
==1
2\ 1/2
Mol ipaxc
u, = (z"_) uBD(p)eire ,
@p @, 2 2.2
n1/2 —5~ = p"+mycT,
meC 1,4 ~ipaxa| ©
o= {3 u "1 p)e P
wP

with respect to w*19(p) see [7].

Maxwell field:
2 -
h )
A= ) f o 2 £ et ot a3
k

A=1

with
w 1/2
- k ikpxt
ty, = (2m) "2 (?) g (k) wf = Pk

The operator-valued expansion coefficients are constant.

The author wishes to thank Professors E. Schmutzer and G. Weber as well as Dr
D. Kramer for numerous stimulating discussions.
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