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Using the dimensional regularization the inclusive cross section for the Coulomb
scattering is obtained. It is shown that it gives the same result as the Pauli-Villars regular-

ization. At the end we present some numerical results for the inclusive Coulomb scattering
cross-section.

1. Introduction

Calculations of radiative corrections in quantum electrodynamics are plagued by the
well known infrared divergence problem. Conventionally, one overcomes this difficulty
by regularizing the infrared divergences at the S-matrix level by giving the photon an
infinitesimal mass 4 Such divergences arise in both virtual photonic corrections and the
real Bremsstrahlung processes. Fortunately when we sum up probabilities from these
two sources the infrared divergences cancel each other in the arbitrary order of perturba-
tion theory, and the regularizing parameter A can be set equal to zero. It was shown in [1]
that it is possible to calculate infrared divergent integrals without the introduction of
a fictitious photon mass. One can do it using the dimensional regularization method.
One parameter allows us to regularize ultraviolet and infrared divergences. In both cases
these divergences manifest themselves as poles for n = 4. It was shown in [1] that the
elastic and the inelastic poles cancel each other. In Section 2 we calculate, using the dimen-
sional regularization, the cross section for the Coulomb scattering and show that the
result obtained from the dimensional and the Pauli-Villars regularizations are the same up
to the fourth order of perturbation theory. In Section 3 we give the expression for the
cross section of the inclusive Coulomb scattering which is free from divergences. At the
end we present some numerical calculations.
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2. Coulomb scattering

It was shown [2-4] that for the zero photon mass, non-zero transition probabil-
ities are obtained by summing the probabilities of the processes for which the final states
differ solely as to the number of soft photons they contain. Such an overall probability
can be written symbolically as

Y [ P(p, g, k; ki, Ky ., Kl

in which the summation and integration run over the states of the soft photons. This
formula is simplified significantly in perturbation theory since only the emission of several
soft photons is possible in the lower orders of the theory. In the lowest non-trivial order of
perturbation theory it is possible to have either an elastic process without the emission
of soft photons or a process with the emission of a single photon. In the simplest case of
electron scattering in an external field, the aforementioned overall probability is given by

P(p,)+ _§ EdF P(p, q, k).

{F|<4

The divergent expressions of the type 1/(n—4) in both terms of the sum cancel each other
and in the overall probability we may pass to the limit when n — 4, obtaining the finite
result.

Now we compute the cross section for the electron scattering in the Coulomb field.
Figs 1, 2 and 3 contain diagrams which we must take into consideration [2, 5, 11]. The
last four diagrams of Fig. 2 renormalize the mass and the charge of the electron. In this
procedure no renormalization of field operators is needed. Moreover, these diagrams are
convenient in the discussion of the infrared catastrophy because one can show which
infrared divergences of the elastic processes are cancelled by those of the inelastic processes.
For instance the infrared divergence of Fig. 2a is cancelled by that of Fig. 3a. Since we
use the dimensional regularization, we must generalize the three-dimensional integral in
Fig. 3 to n—1 dimensions. To obtain this one can use the renormalized vertex correction.

The theory of the dimensional regularization can be found in [6, 7]. But we have to
change this definition of the regularization because in the intermediate steps of calcula-
tions we encounter terms which have no physical meaning. For instance from the vertex
correction we obtain the expression

T 1 22
1r11€(<‘/1+'t + ’1_)111(\/1+,12 +,1)—1),

A Vi+22

which has no meaning because we have the logarithm of the dimensional quantity E. From
the inelastic processes we have

T 12
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and when we sum up we obtain the correct expression. To avoid this we will use the fol-
lowing dimensional regularization for the virtual corrections

d*k d"k
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4-n

H

where u is an arbitrary parameter with the dimension of the mass. Using this definition of
the regularization procedure for virtual corrections one can find the dimensional regulariza-
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ia1 for th: real inelastic processes. The generalization of the momentum space integral
s [1, 8]
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Since p is an arbitrary parameter, the physical quantities like cross sections cannot depend
on it. The final result for the Coulomb scattering is (see. Appendix)

- / 2 .
do do 20 E VIi+4 A —
_— = — 1— ]t — (! - i 22 - |
a0 (dﬂ){ n[“AE(\ 2 +\/1+;f)"(‘/1+ 4 1)“)]} @

This is the same resuit which was obtained by Schwinger {9, 10}. Thus we see that the
dimensional and the Pauli-Villars regularizations give the same result. But the dimensional
regularization is more convenient because all calculations are simpler and the Ward identi-
ties are fulfilled automatically.

3. Inclusive cross section

In this Section we calculate the inclusive cross section for the Coulomb scattering.
The cross section with AE for large energy becomes negative and it is very difficult to
interpret the result. The inclusive cross section is positive and for large energy we obtain
a compact expression for it.

Now we give the result for the inclusive cross section. To calculate it we must sum
up the same diagrams but the integration over the energy of the final photon is from zero
to the maximal value £ m. Thus we cannot use the approximation that the energy of the
photon ® < m. The inclusive cross section is-(see Appendix)

do do 2 E [(N1+22 A
==} 1-ZAm — 4 =
dQ /i aQ J, n E—m / V1+72

xIn (V1 +4? +}.)-1> +D:| +A}. (3)

All integrals in this expression are finite.

It is rather difficult to say something about this ctoss section for an arbitrary energy
of the initial electron. But we can obtain a compact result if we calculate the cross section
asymptotically, i. e., for E » m. For large E, 4 is a function only of the angle #. Then
asymptotically we have

do, )L\S _ -ilz. as ia 1_3
(Ezinc! B (dQ>O {l+ s [F(0)+ ° i]} , (4)

where s = In E/m. From this calculation it follows that in the fourth order of perturbation
theory we have for the asymptotic region

(dcr c do)“s+(da *
dQ incl B dQ el d'Q nel,
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where (do/dQ):} is the contribution from the elastic processes and (do/dQ)::, is the one
from the inelastic processes (we cancelled the infrared poles).

do \* do \* 2u E
—_— R 1 —— F 0 Z Ha, I — ’
(i), = (), {1+ 5 [Fao et srnen 1}
do \* 20 ([ do \* E

—_— = =<l — F (0)+2s—H(8, —I%,
<d9>ncl T {( dQ)O [ nd( )+—fs ( S) ln lu]}

and when we add those expressions we obtain (4). From (3) it is clear that one can obtain
the inclusive cross section from (2), changing the resolution energy AE —+ E—m, and
adding a function 4. But asymptotically 4 depends only on #. We will have a similar
sitvation in higher orders of perturbation theory. In the 2n-th order we must add the

expression
da n‘lAn'e E )
— ) o , E, m).

We conjecture that asymptotically
n—2 .
A6, E,m) = ). f{0)s'
i=0

and therefore the leading term in the asymptotic expansion in the 2n-th order can be
determined from elastic processes and soft inelastic processes if one formally changes
AE - FE.

4. Numerical calculations

In this Section we present some numerical results for the inclusive Coulomb scattering
cross section. Since this cross section for a very small momentum is equal to (do/dQ),,
one sees that the virtual and real corrections will be significant for large energies. We define

the quantity
d d
0, s) = il _i) .
dQ incl d‘Q ]

For a fixed 5, (0, s5) is a growing function of 6 and also for a fixed 8 it is a growing function
of 5. Figs 4 and 5 present plots of the Z(6, s) for given # and s, respectively. The function
F(8) approaches infinity for 6 = 180°. However, the inclusive cross section for this angle
is finite because from (do/dQ)5* we have the factor cos? 8/2 and the product F(6) - cos® §/2
is finite for 6 = 180°.
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5. Conclusion

We calculated in this paper the Coulomb scattering using the dimensional regulariza-
tion, showing that the result is the same as that obtained from the Pauli-Villars regulariza-
tion. We showed also that one can obtain the inclusive Coulomb scattering from the
expression with a finite resolution energy, changing AE into E—m and adding a function
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4 which does not depend on s asymptotically. We think that this result can be generalized

n—1

to higher orders of perturbation theory, i. e., in the 2n-th order 4" does not depend on s" ™ 1.

The author would like to thank Professor I. Bialynicki-Birula for suggesting this
problem and critical discussions.

APPENDIX

Calculating the cross section (2) we use the following relation
. 1 1+ o 2E
20 1—po | In(1+A%(1—x7) m
1+22(1=x % 1+.201-xY) 1+2%(1—x%)

1—pv 1+ fe
, |in In
4 m 2 2
2BvE*| 1+ pr 1—pv

3

where

7} 0
i=-—sin-, o*=1-(1-x%sin®-.
m 2 2

We also used

d
P = TG, p—yd) = 2In2.
X

I'(x) is Euler’s function and we utilized the following integral representation of the hyper-
geometrical function
i
I'(o) . pe -
Fla,b,¢;2) = ———o | 7 A~ —12) %1,
( ) F(b)[,(c_b)j (A=) (1 ~12)

[

Rec>Reb >0, Jjarg(l-2z)|<m.

do _ Q% . 2(_9
R

16np>p> sin‘*i

Also in (2) we have

1—fv 1+pv
In In

1
m? dx 2 2 1
D=—~——2(,12+%)j—vv - -5 t%
0

BE 1+ Bo 1—Bo 342
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Calculating (3) we encountered the integrals
Apn = [ A2 —FD) "1~ ku)™".

‘These integrals can be calculated for m 2= 0 and n > 0, applying the Feynman-Schwinger

technique (m, n are integers). But we met also the integral 4, _, which can be expressed
by the above using

Ay -y = {(EJ)/UZ}ALO""{I”[(EJ)/UZJ}Az,o-
In (3) we have

1 E-m
do Q%e®m*E " do ([2byp'(E*+E'*)  4pyE*
—) 4= — dxdy - 2 2 22 T T3
ae /, 2n w m-w(b”—p°) m-wbg
0 0]

+L P I3 N I—x pc _p
2m* | E?—np  a’—n’ @ L=y

+1—x p'd p| [ pb p
o | @=5? o] o= b}

E2x<1 x)[sp p’(3d2—52)}

CUZ o - (d2_52)3

x(1—x) [3E2p PE?(3c: =D
N 5]

w? ch (c*—v

L 2=y [p’E’(3b2 —0%) 3Ep] p
wZ (b2_02)3 bg mZ(CZ_,yZ)
N p/ B 2xp/5/'y’ N 2xprC2(Ely2 _ Ci;la;)
mZ(dZ__b‘Z) m2y2(c2___,y2) m2,y2(02_y2)2
2xp'po 2xp'd*(E5* — dpd)
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where
E =E-0, p?=p+o’-2E0,
a=xE+(1—x)E, 7 =xp+(1—x)p,

. o=y, e
b= yxE+y(1=x)E'+ —=(p"+p" + " =2pp),

—(yx+2-2y)p—(By—yx=2)p,

Y
f

—_ i 2 ’2 2_2"”/
¢ = (t=x)E+ — (p"+p" + 0" =2pp),

7 = —(1+x)p+2xp’,

I

’ X 2 72 2 Ingag;
d=(1-x)E+ —(p*+p”*+w*—2pp),
w

3= —2xp+GBx—1)p’,
n2 = p(x>+(1—x)>+2x(1—x) cos 6),

. 2(1=y)p*(1—cos 0) s
pp = 2T Umeosh)
w I
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