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DISCUSSION OF THE BACK-BENDING EFFECT IN NUCLEI
IN TERMS OF SIMPLE MODELS

By S. Cwiok*, J. DUDEK** AND Z. SZYMANSKI

Institute of Nuclear Research, Warsaw***
( Received March 21, 1978)

The cranking method has been treated by means of the Hartree-Fock-Bogolyubov
approach and has been applied to the description of fast nuclear rotation in terms of two
simple models. The mechanism of the back-bending effect due to a gapless superconductivity,
and closely connected with the Stephens-Simon alignment effect, was analysed. The yrast
lines turn out to be composed mostly of the HFB vacuum states, however, some of the yrast
states are shown to have two quasiparticle character. There is also another mechanism of
the back-bending effect possible in our model; it is connected with the disappearance of the
superfluid pairing correlations and occurs within the model provided the pairing is strong
enough.

1. Introduction

The more detailed analysis of the multiband structure of rotational spectra has become
possible owing to the recent progress in experiments on high angular momentum states in
nuclei [1-3]. In some cases the identification of the crossing rotational bands connected
with the back-bending effect has become possible in terms of the single particle orbitals
[4-6] in line with the early suggestion by Stephens and Simon [7). However, the presence
of the short range correlations of the superfluid type [8] in nuclei tends to counteract
the Coriolis and centrifugal forces [9]. Moreover, the possibility of the shape changes
in the nucleus adds up to a rather complex picture of the nuclear processes at high angular
momenta. In order to account for these effects properly the search was undertaken of the
method general enough so as to incorporate all of the complex aspects of nuclear behaviour
we mentioned above. It has been found that the Hartree-Fock-Bogolyubov (HFB) approach
applied to the nuclear cranking model [10, 11] provides an appropriate scheme for the
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investigation of the high angular momentum processes in nuclei and, in particular, of the
back-bending phenomena. This is sometimes referred to as ‘“cranked HFB” method
[12-16].

However, it has been argued that the cranking model procedure employing angular
velocity of rotation, w, leaves certain parts of the yrast line undefined [17, 18] (see also
Refs [19, 20]). This is just the case if noninteracting single particle (or quasiparticle) picture
is applied in the region where two levels cross as functions of w. The elementary excita-
tions may approximately be described in terms of single quasiparticles in the superfluid
system. Crossing of the single quasiparticle eigenvalues, denoted from now on by Ep,
would then manifest itself as the effect of the gapless superconductivity [21, 22] and is
closely related to the rearrangement of the quasiparticle vacuum state (see below). Follow-
ing this line and thus including the two quasiparticle excited states in addition to the
vacuum, Bengtsson and Frauendorf [4, 5] (see also [6]) have initiated an analysis of the
high angular momentum rotational spectra. Recently, Bengtsson, Mottelson and Hama-
moto [23] have found that the rearrangement of the HFB vacuum as connected with
vanishing of the sum of two lowest quasiparticle eigenvalues occurs almost periodically
as function of filling the i %* neutron shell in Rare Earth nuclei.

In this paper we attempt to analyse the band crossing within the cranked HFB method.
In particular we concentrate on the structure of the HFB solutions near the point of rear-
rangement of the HFB vacuum and study in this way the structure of back-bending effect.
We use the simple model in which a rather detailed analysis of the solution properties
becomes possible. Following the discussion of Hamamoto [18], regions of the yrast line
that are undefined by the single quasiparticle cranking model are filled in by the two
quasiparticle states obtained from HFB equations, similarly as in the calculation by
Bengtsson and Frauendorf {4, 5]. One may hope that after having understood the role
of the gapless superconductivity (or the effect of crossing) in the microstructure of the
yrast line one may be able to describe adequately the nuclear behaviour in the whole
region of back-bending.

We shall start our considerations by recapitulating the main assumptions underlying
the cranking model procedure (Section 2). Then, (Section 3), we employ a very simple model
based on the two level solution of the HFB equations [24] (see also [25]) and we discuss
the level crossing. Next, (Section 4) we present another model employing the i % mul-
tiplet located in the vicinity of levels that are less sensitive to nuclear rotation than those
of i .

2. Cranking model

In this section we shall briefly recall the procedure of minimization of the nuclear
energy for fixed angular momentum. This leads to one of the possible formulations of the
cranking model. We assume that the nucleus is described by the Hamiltonian H including
the deformed single particle potential ¥ and the two-body monopole pairing forces of
strength G. Although the HFB method provides us, in principle, with the possibility of
deriving the selfconsistent potential from the realistic two-body forces, we shall not be
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concerned with this part of the problem assuming that our potential ¥ is already selfconsis-
tent. We focus our attention on the properties of the gap (order) parameter 4 character-
ising the selfconsistent behaviour of the pairing force (see below).

We minimize the energy defined as the expectation value of the hamiltonian H with
the constraint that the total angular momentum (which is identified throughout this paper
with the component J,, an approximation valid for large angular momenta we are especially
interested in) has a definite value % \/ I{I+1). In this way we are led to the auxiliary
(cranking) operator H® in the form

H?® = H-w'hJ,, 2.1)
where the Lagrange multiplier ' has in addition the physical meaning of the angular
velocity of rotation so that we can write

o' = o = (Yh) dEjd NIT+1)).
Here, E is the total nuclear energy i. e. including also the energy of rotation (see bellow).
Operator H® of Eq. (2.1) may be understood alternatively as the Hamiltonian of the
system rotating with angular velocity @ about the x-axis. The presence of the whJ, term
in H* accounts for the Coriolis and centrifugal forces in nuclei. Hamiltonian of the system,

H, is taken to be a sum of the single particle kinetic energy and the deformed potential
energy terms and the two-body monopole pairing force expressed by

Vo= -GY a{a{a;,ak, 2.3)
e

in the standard notation (ik) is time reversed (kD).
Now, diagonalisation of H® leads to determination of the eigenvalues E®

while the parameter w has to be calculated from the constraint equation
WLy = VId+1) @.5)

whose solutions provide us with the dependence w = w(I).

It is very difficult to find exact solutions of Eqs (2.4) even for simplified models.
If the HFB approximation is used, equation (2.5) has to be completed by two additional
relations. One of them is the particle number equation

N =5 ou (2.6)

and the second is the gap equation

A = ZG ; Xk;’ (2‘7)

Here ¢ and y denote density and pair density matrices defined as usually in the HFB

formalism (see e. g. Ref. [26]). Two equations, Eq. (2.6) and Eq. (2.7), are used for deter-
mining the chemical potential A and the gap parameter 4.
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The operator H® is only the auxiliary Hamiltonian which should not be identified
with the energy if w # 0. The true nuclear energy, E, is calculated as the expectation
value of the original Hamiltonian H in the state |yp*)

E = (y°H|y®> = E°+hoVIT+1). (2.8)
Let us also observe that
dE®jdo = —h~I{I+1). 2.9)

It often happens, in the typical nuclear HFB calculation, that structure of the HFB
vacuum state |¢®> is abruptly changed at certain value of w. Then the curve E* versus @
undergoes a rapid change in slope or even a cusp. This corresponds, in the case of an
unpaired system, to a crossing of the two single particle eigenvalues of H® at this w value
[27). Although there may be no discontinuity in E® with respect to @, a jump in the value

of I(I+1) must follow from the abrupt change of the vacuum structure. Energy E
becomes then a discontinuous function of w (cf. Eq. (2.8)) and the plot of E versus 7 (yrast
line) exhibits a gap corresponding to the discontinuity in both E and I near the point
of the band crossing.

3. Model based on a pair of the two-level systems

We shall first consider the simple solvable model consisting of the two subsystems,
denoted in the following by I and II, both of the two-level type. Subsystem I consists of
four levels, say I, 2, 3 and 4, where 2 is time reversed I and 4 is time reversed 3. The split-

Degeneracy = 2152
p ~

$ K A=0

2 —qjr i~ ~tj i —— e 2 5

Degeneracy =2xR2

Fig. 1. Simple model for a single 7 = 3/2 shell (states 1, 2, 3, 4 split by “‘deformation”) embedded in the
opposite parity spectrum (22 degenerate two level model) as discussed in the text

ting between the levels I, 2 and 3, 4 is denoted by 2e, Fig. 1. We assume that the j, operator
(single particle component of J,) connects the states / with 3 and 2 with 4 only, so that

Uiz = Us = ~(Udu=—Udez=1 (3.1

while all the other matrix elements vanish by definition. Subsystem II is composed of
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4Q states forming two degenerate levels split by energy 2s. Each pair of levels is now 2Q
times degenerate. These states, by the assumption, do not interact either among themselves
or with the levels of subsystem I via j, operator. The purpose of introducing the subsystem
Il is to provide the-appropriate density of levels so as to create the superfluid correlations
in the system while the presence of Coriolis interaction between states /, 2, 3 and 4 of
subsystem I serves for exhibiting those properties of the whole system that are most sensitive
to nuclear rotation. We assume furthermore that the number of particles in the system is
N = 2Q+2, i. e. corresponds to the one half of the available levels, N; = 4Q+4, We also
assume that both subsystems, I and 1I, are located symmetrically with respect to zero
energy so that ¢, = +e¢ for levels I and 2 and ¢, = —e for levels 3 and 4, while ¢, = +¢
or —¢ for the upper and lower parts of subsystem II, respectively. This symmetry implies
that the location of the chemical potential is fixed at 1 = 0 when we apply the HFB
method. Note that 4 = 0 holds independently of w in the model.

Let us now develop cranking model for the system using the HFB method. Solu-
tions of the HFB equations for subsystem I treated separately are known [24] (see also
[25]). In our case the two subsystems are not coupled by Coriolis interaction. The only
coupling between the two subsystems is provided by the requirement of selfconsistency i. e.
by the gap equation (2.7). As mentioned before the two body pairing force is assumed
to be of the pure monopole nature which implies that the pairing force affects HFB equa-
tions only through the one parameter, 4. We shall not write down the HFB equations
in this section but rather in Section 4 where a slightly more complicated model is discussed
(see also Refs [4, 5, 12-16]). For the two level model (subsystem 1) the HFB equations
have been solved explicitly (see Refs [24, 25] and also Refs [19, 28]). Our notation follcws
here generally the one of Ref. [28]. The quasiparticle eigenvalues corresponding to the
subsystem 1 are

E, = Ve +(d+hw). (3.2)

It can easily be shown that for the subsystem Il we obtain the familiar BCS-type wave
function. Consequently the quasiparticle energies are

& = Ve + 2. (3.3)

The HFB density matrix g, and the pair density matrix y,, turn out to be block
diagonal with respect to subsystems I and II and both parts of ¢ and y can be written down
explicitly. The corresponding matrices for the subsystem 1 are given e. g. in Table (2-2)
of Ref. [28]. For the system II simple BCS formulas are valid

i = oo V(1 —eJ8)2 (3.4)

e = S sgn (k) TV (1—e/6) (1 +e,/8), 3.9

where e, = +¢ for the upper and lower level, respectively and & is given by Eq. (3.3).
Now the selfconsistency conditions read

24/G = (4 +hw)/E,+(4 —hw)/E- (3.6)
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(gap equation) and
I = (4+ho)E,—(4-ho)E- 3.7)
(angular momentum equation), where
1=VIa+m. (3.8)

The function E corresponds to the vacuum state energy and is given in the HFB
formalism (see for instance Ref. [26]) as

E® = {y”|H®|y®)
= }; (e — 0(j Do —5 4 ; Ak (3.9
in terms of the ¢ and y matrices. In the discussed model one can calculate E® explicitly.
The result is
E® = A*/G-2Q&6—E,—E_. (3.10)

Let us now discuss properties of the solutions to the model described above and
consider first an approximate solution in the case of large degeneracy of levels in the sub-
system II: © > 1. The subsystem I can then be treated as a small perturbation. We may
use expansions

4= A0+A1+..., (3.11)
E =80t Ei+..., (.12)
where
o = GO, (3.13)
4o = V(G -2, (3.14)

are the zero order solutions of Eq. (3.6). The first order expression is
&1 = [G*Q[(240)] [(4o+h®)[EQ +(4y—hw)/E®]
= Aod,/Eo, (3.15)
where
EY = (Ex)l=ao (3.16)
Using Eq. (3.9) we obtain, to first order,
E® = —(GQ) {1+ [e/(GR)* ]} —(EQ +ED)+ ... (3.17)

Equalities (3.11)-(3.17) exhibit smooth behaviour of HFB vacuum as a function of w.
The variation, however, of all relevant functions becomes quite rapid when the energy
splitting, e, in subsystem I is small i. e.

e < 4. (3.18)
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In this case we have esentially I &~ 0 for w < Ao/h while for o > Ao/h we obtain T~ 2
(cf. Eq. (3.7)). This behaviour leads to a rapid increase of the total energy (2.8) as function
of w, in addition to the jump in 1. The quasiparticle spectrum and the energy E as a function
of w are illustrated in Fig. 2 with solid lines.
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Fig. 2. Quasiparticle energies of the single “j = 3/2 shell” model (upper part) and the corresponding total
energies of the vacuum (solid line) as well as 2 q. p. configuration (dashed line) vs angular velocity. Numbers
along the total energy curves denote angular momentum

Let us consider, in addition to the ground state (i. e. the HFB vacuum state) also
the excited two quasiparticle state obtained by making use of the negative energy solution
for the quasiparticle energy [12]

= —F_ 3.19)

which should replace now the positive one included previously (£ = +E_). Thus we
obtain other solutions of the HFB equations and in particular the eigenvectors obtained
now differ from those obtained previously. As a consequence we obtain modified matrices
o and y as well. These matrices can be expiessed from Table (2-2) of Ref. [28] by inter-
changing E. and (—E_). In this way we obtain modified expressions also for 4, E® and E
which correspond to the two quasiparticle excited state. In the approximation Q » 1
we get

T, = —(GH) {1+ [e)(GR*} —(EQ—~ED)+ ... (3.20)

2q.p.
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The total energy E (cf. Eq. (2.8)) which results from considering of the two quasiparticle
state is illustrated in Fig. 2 (dashed, line). Let us observe that in our approximation both
curves, £ and Ej, ,, for vacuum and two quasiparticle state respectively, are symmetric
with respect to w = A,/h. This symmetry follows directly from the fact that our subsystem
IT is completely insensitive to nuclear rotation and the only change with  is provided by
the w-dependent mixture of the upper branch (7 = 2) with the lower one (I = 0), Fig. 2.
In fact, the more realistic (w-dependent) subsystem II would produce an asymmetry
in Fig. 2 (bottom part) by tilting the whole picture counterclockwise about a certain
angle.

We can also calculate the dispersion in angular momentum j, corresponding to our
simple model. For 2 » 1 we obtain

df 2 5
D(w) = {y*Wil9”> — < lLly®>

2<1+1> 2(1 + 1>+ (3.21)
= € o -] =8 ——i 3 .
E%  E* EQ*  E©

If e < 4, dispersion (3.21) is generally a very small quantity except for the immediate
vicinity of the point w = 4,/h where

2e*+442
Dlw = Ag/h) ~ ——75 = 3.22
( o) e’ +443 (3.22)
Variation of the dispersion D is illustrated in Fig. 3.
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Fig. 3. Dispersion corresponding to the expected value of j, operator calculated for the vacuum configura-
tion in the *j = 3/2 shell” model

We can conclude that, in the approximation 2 » 1, our system is entirely described
by a single crossing of levels. The change in angular momentum is entirely due to the
rearrangement of the HFB vacuum and the system does not respond to the rotation before
and after crossing point. Let us emphasize, on the other hand, that for w close to the
crossing point usual HFB solutions become unphysical since the spread in angular mo-
mentum becomes large, contradicting the original assumption for the validity of the
cranking model.
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We have discussed regular (and continuous) solution of our model within approxi-
mation appropriate for Q > 1. However it is easy to find anether solution of Eq. (3.6)
which is exact in the case of ¢ = 0. In this case we obtain

24 A4+how 4—-ho 249

- + . 3.23
G +hal T id—hol T Jite (.23
In the region of large w we have simply
B = 4o = V(G =22 (3.24)
and
Erigne = 6o = G (3.25)

This solution is valid for @ > 4,/h. On the other hand, for small w values we have
Aiere = 4, (3.26)
Srepe = 6 = NAT+E2, (3.27)
where 4, is the solution of the equation
4 _ 1+ —Q‘l"—. (3.28)
G N, A2 46

This solution is valid for w < 4,/#. Now, one can easily show that

4, > Ao, (3.29)
&, > & = GQ. (3.30)

Consequently, in the region 4,/h < w < 4,/h both the solutions coexist. We can also
calculate the total energy E (Eq. (2.8)) of the system. Using (3.17) and (2.8) we obtain

Egne = —Q°G—€2/G (3.31)
for w > 4o/h and
Ejq = ~Q°6,—°Q[6,~ 4, (3.32)
for w < Ao/h. Again, it is easy to prove that
Eright > Eleft' (333)

The results of this simple calculation are illustrated in Fig. 4 where both 4 and F are plotted
versus . The energy jump illustrated in this figure and the fact that 4, < 4, may be
tempting to join the two branches of the bottom part of Fig. 4 and thus providing the ex-
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planation of the back-bending effect. In fact, the same properties of solutions seem to
show up in more realistic situations (see below). However, we have seen that solutions
<corresponding to the transition (rearrangement) region, if exist, seem to be quite unphysical
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Fig. 4. lMustration of the non-unique character of the solutions of HFB equations applied to our simple
model. Note that maximum two solutions coexist for a given o value

as argued above (cf. Fig. 3). Consequently, we would rather look for the inclusion of the
two quasiparticle states into the yrast line as the explanation of the physical effect of
back-bending.

4. Model based on the i %7 multiplet

Let us examine another model which is believed to be slightly more realistic than
the one discussed in the previous section. It is well known that in the realistic single par-
ticle nuclear spectrum one of the high angular momentum orbitals is usually shifted
down to the lower nuclear major shell owing to the spin-orbit coupling. For example,
in the deformed Rare Earth nuclei, the i 5* positive parity neutron orbital is embedded
in the negative parity part of the spectrum. For instance, in the case of the harmonic
oscillator spectrum, these negative parity states correspond to the major quantum number
N = 5. Let us note that the embedded orbitals (e. g. i 'j*) are of relatively high angular
momentum and thus are most sensitive to the nuclear Coriolis interaction. Consequently,
we pay the special attention to the orbit i % assuming in our model, that the rest of the

single particle states, say, N = 5 negative parity states, can be treated as a background
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and can be approximated by a degenerate two-level model of the j = 2 orbitals. Since
the Coriolis matrix elements connect states of the same parity only, we may concentrate
on i % orbitals separately. Consequently, we play with seven doubly degenerate levels,
Fig. 5. We assume however, for the sake of simplicity, that the j, matrix elements between

these states are the same as in the case of spherical i } multiplet. Such an assumption

/}3 2 multiplet
4,0 o S——
4.2
~45 7
[
0’ Y2 muttiplet
Degenerocy < 2«2
ey T T —
L A=-213

70— EATIIR LI ¢ s .+ s - e+ s e & e - s
»8'5 -&3 L__. --------- u——j

v
Degeneracy =242

Fig. 5. Single particle level scheme used for illustration of the alignment effect within cranked HFB for-

malism. The positive parity multiplet 7 13/2 is imitated by the set of seven levels (left-hand side) and the

282 times degenerate two-level sets serve as a model for N = 5 shell, the configuration characteristic for
neutrons in Rare Earth nuclei. Numerical values correspond to the energies of the levels

introduces certain additional error which, for small deformations of realistic nuclei is of
the order of a few percent and is expected to be of the order of errors introduced by the
HFB approximation itself. The level positions are chosen somewhat arbitrarily so as to
exhibit most drastically the effect of level crossing.

Before writing down the HFB equations for the model let us first introduce the Good-
man transformation from the original basis of deformed orbitals k), |k> ... to the new
basis, KD, K> ..., defined as follows

i
K== (=i + (=D HB].

i
- 1 )
K> =735 (=" k> + k], 4.1
v

with Q, being the projection of the single particle angular momentum on the nuclear
symmetry axis [29]. Transformation (4.1) enables us to split the 28 x 28 matrix correspond-
ing to the i > multiplet into two 14 x 14 sets of HFB equations

(ek—beL—hw;(j»mAK"erBzL = Ef7 A",

~(e—ABg"~ho ¥ (jkx Br" +4A4x" = E{”Bi" 4.2)
&
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and

(= NAFE+ho Y (e Axt ~ 4B E = E AL,
2.
—(ex— B +ho ; (xxBr" — 445" = E%m)BKL’ (4.3)

where the indices K, K’, K, K’ run from 1 to 7 (see also below).

It is sufficient to solve only one of the above two sets since the substitution of {BgL,
AgL; —EX} in place of {Ag", Bx"; E{*"} in (4.2) transforms (4.2) into (4.3). This part of
the HFB equations which corresponds to j = 3/2 two level model has known solutions
(see Ref. [25]). They are coupled to the set (4.2) and (4.3) only through the particle number,
gap, and angular momentum equations

N = ; 0Kk 4.4
4=26% (4.5)
and
I= ¥ (JokLoke (4.6)
KL

which are common for both subsystems.
Matrices og; and xx, are built out of the Bogoliubov transformation coefficients
A" and Bi" appearing in the HFB equations (4.2) and (4.3)

Okk = %szBx'z, 4.7
orr = X Bi"By", (4.8)
oxk = Okx = 0, (4.9)
Ixg = %AE'ZBJ, (4.10)
Aik = gAx'LBzL, (4.11)
ik = Xkg = 0. (4.12)

Equations (4.2) and (4.3) are to be solved by iterative procedure for each w value
separately. Certain guess for A and 4 is made first and the eigenvectors A" and By " are
found from (4.2) and (4.3). Then matrices ¢ and y are computed from Eqs (4.7)-(4.12)
and selfconsistency relations (4.4) and (4.5) are checked. If equations (4.4) and (4.5) are
not fulfilled, corrections to A and 4 are to be made and the whole procedure is repeated.
At the end of iteration we determine A and 4 corresponding to the selfconsistency condi-
tion within prescribed accuracy. Then Eq. (4.6) is used to calculate 1.
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Let us now discuss properties of the solutions of HFB equations and nature of the
resulting back-bending effect in the framework of the model.- Let us choose, for the sake
of illustration, a definite set of numerical parameters. The corresponding single particle
levels are plotted in Fig. 5. The location of the chemical potential A is indicated in this
figure for the case of w = 0. It corresponds to G = 0.25. The single particle level
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Fig. 6. The quasiparticle energies obtained with G = 0.30 MeV for the particle number N = 12, The single -

particle level spectrum is illustrated in Fig. 5. The corresponding behaviour of the energy gap 4 is shown

in the bottom part of the figure. Note the two characteristic regions in the latter. They correspond to the

jump in 4 (and in the quasiparticle spectrum), which reflects the gapless superconductivity effect, and to

the region of disappearance of pairing (4 — 0). The exact behaviour of the quasiparticle energies in the

region 4 — 0 is described, in fact, by the multivalued functions and this cannot be illustrated in the scale
of the figure

scheme is quite arbitrary and does not correspond to any realistic potential. The
only condition we would like to fulfil is the approximate overlap of one of the levels
with the location of the chemical potential A. In such a case a gapless superconduc-
tivity (i. e. vanishing of the two quasiparticle energy) is especially distinct and easy to
illustrate. Fig. 6 shows the quasiparticle eigenvalues E{® obtained from the solution of

set (4.2) of the HFB equations. Let us denote the eigenvalues by E{*, E{?, ..., E{®, -E
—E%w), ey —E;m), in decreasing order. The eigenvalues of the second set (Eq. (4.3)) are

therefore E;m), E;(gw), o B, —E(®, —E{”, ..., —E{* (also in decreasing order). It is well
known that the HFB formalism doubles artificially the number of dimensions of the

b4
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corresponding Hilbert space. Consequently, only part of the solutions can be interpreted
as physical. It means e. g. that in the summations (4.7), (4.8), (4.10) and (4.11) indices
L or L run over the values corresponding to states included in this part. If, for instance,
we chose the seven highest eigenvalues E{® for each set (4.2) or (4.3) (i. e. solutions E{®,
E®, .., E® for set (4.2) and E5”, ES”, ..., EY” for set (4.3)) we obtain the vacuum
which is stable with respect to the two quasiparticle excitations
ESQy. = Ef)+Ef).

The stability of the vacuum means that E{3), > 0; it is most easily seen in the region of
small o values where all the eigenvalues E{?, ES, ..., ES” are positive. The lowest two
quasiparticle state is then

ES, = ES”+E{ > 0. (4.13)

Energy (MeV)

1 1 1 1 1 1 ﬁW(NfiV)
0] 02 03 04 05 06 07 08 09 o

20

A(MeV}
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10 i 0201 78 »
1 1 .
2, 23:*-—--2  w(MeV)

1 1 1
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Fig. 7. Top part of the figure illustrates energy E versus angular velocity w calculated within our model

for the ground state configuration (original vacuum configuration, solid line) and for the two quasiparticle

configuration (dashed line). Botiom part illustrates analogous variation of the parameter 4. Numbers
labeling the curves denote angular momentum (see text)
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The same inequality holds even in the region of larger w, where one of the eigenvalues
becomes negative

E\® <.

This occurs in our example at w = 0.35, Fig. 6, but as long as E{*'> ——E',‘*w), we still obtain.
inequality (4.13). The essential rearrangement in the vacuum appears at © = o* x 0.4,
Fig. 6, and this corresponds to a situation referred to as a gapless superconductivity. Beyond
that point, characterised by vanishing of the lowest two quasiparticle excitation, the
vacuum is not stable any more and the “new” vacuum, identified with the state of the
lowest energy, is established: the extension of E{® for & > w* has to be replaced by the

extension of —E,Sm) for w > w*. In this way we are still in agreement with the rule that
the highest eigenvalues have to be considered as physical and included in the vacuumstate

whose structure is thus rearranged at w = w*. Since the two levels (E{®) and —E,iw) in Fig. 6)
almost cross each other in our numerical example, the resulting transition in the vacuum
is very rapid. Fig. 7 illustrates the energy E corresponding to this transition, calculated
from Eq. (2.8). The resulting angular momenta, 1, are also shown in the figure. We can
see that there is 2 jump connected with the rearrangement in the vacuum, both in angular
momentum and energy. ‘

We have demonstrated in the previous section that the physical interpretation of the
HFB solutions in an immediate vicinity of the transition point becomes rather uncertain
(cf. Fig. 3); even if a solution of the cranked HFB equations exists in this region, it is
composed of mixtures of states whose angular momenta differ very much from each other
whereas the corresponding decomposition amplitudes are comparable and relatively large.
For instance, in our example, the HFB wave function with the expectation value of spin
I = 6 may contain large and comparable contributions from 7 = 3 and 7 = 10 compo-
nents providing us with the proper average, / = 6. Consequently, the spread in angular
momentum is large as it is shown in Fig. 3 for the simpler two-level model. In fact, in some
part of the transition region it may even happen that there is no solution which would
provide a continuous junction between the two branches marked in Fig. 7 with 1, 2, 3
and 12, 13, 14, ..., respectively. Fig. 8 illustrates the fact that there is no junction between
the two branches in the transition region when computed very thoroughly. We can see
that the plot consists of the two disconnected parts similarily as in the simpler model
discussed in preceding section (cf. Fig. 4).

Following the details of the computation one can see that behaviour of Eand 7 vs @
near the transition region becomes extremely sensitive to the secondary features of the model
and its parameters. Consequently, we have decided to remove this region out of our
discussion considering it unphysical. We are left, in this way, with a considerable gap in
the yrast line for angular momentum between 3 and /2 in agreement with the results of
Hamamoto [18]. Now we can fill in the gap in the same way as we did it in Section 3 by
considering the lowest two quasiparticle states. For this purpose we replace the eigenvalue

E{® by the closest one —E}m) for w < w* obtaining in this way the two quasiparticle
excitation which is shown in Fig. 7 as the branch marked with I = 1", 3", 5", ..., 11",
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Similar extension into the region @ > w* of the vacuum configuration valid for v < o*
provides us with the branch 5’, 6’, ... (see Fig. 7). We can easily see that the new branches
of the two quasiparticle nature form natural extensions of the two parts of the vacuum
curve: branch /, 2, 3 goes into 5’, 6', ... while the branch 1", 2, ..., 11" goes into 12, 13, ....
The yrast states first belong to the lower line: 1, 2, 3, 5, 6’, ... until a certain state, I’, has
the same energy as the one from the I” branch (for I' = I'"); this fact obviously does
not have to occur for integer angular momentum which in the whole formalism is treated
as a nondiscrete variable. It can be seen that this occurs in our example roughly at 7 =9
(i.e. the energies corresponding to points 9’ and 9" are approximately equal) and this is
just the position of the back-bending in our model. On the other hand, guided by the

i
| Fw iMev)
0625 0650

L |
0578 0600

22

Energy (MeV)

. | bw (MeV]

1
0575 0600 0625 0650

Fig. 10. The energy gap 4 (top part) and energy E (bottom part) versus angular velocity in the region of
disappearance of pairing

-

discussion of the previous section, we again reject the whole transition region 117, 10'", ...,
5", as unphysical. Thus we can see that the yrast line is not entirely built out of the
HFB vacuum states in the region of back-bending; the two quasiparticle states form also
a part of the yrast line in our approach. This is illustrated in Fig. 9 where the energy vs
angular momentum is plotted. The existence of the crossing bands can easily be seen
from this figure.

Let us finally discuss another possible region of the multivalued behaviour of the
parameter 4 as a function of angular velocity w and consequently the back-bending phenom-
“enon that may show up according to our model. This region turns out to occur for
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larger , say, above «w = 0.6 in our numerical example, and is closely connected with the
disappearance of the superfluid pairing correlations. One can show using simple argu-
ments [28, 30] that a curve 4 = 4(w) may become multivalued near w for which 4 tends
to vanish (fast rotation limit). The same is obtained in our model provided that the pairing
force strength G is large enough. The numerical results for the 4 versus w curve are illus-
trated in Fig. 10 which contains also the energy E vs w plot. Fig. 11 illustrates the same
quantities as functions of angular momentum. Note that a single-valued behaviour results
in this representation. One has to emphasize that the multi-valued behaviour of A versus

d(MeY)

o5}

Energy (MeV)
]
8
T

-96 | , Spinl
6 17 8 v 20 21 2

Fig. 11. Parameter 4 (top part) and energy E (bottom part) versus angular momentum 7 in the region of
vanishing 4

@ in this part of figure depends in a very sensitive way on the magnitude of the pairing
force strength G as well as on the density of levels. It follows from our calculation that
a value of G slightly smaller than that used in Figs 10 and 11 leads to a single-valued
curve A(w) and, consequently, to no back-bending in this region. Thus, it is question of
the detailed balance of various tendencies in real nuclei such as pairing force strength,
density of levels, Coriolis strength etc. whether the vicinity of the transition point 4 — 0
provides us with the back-bending behaviour, or not.

5. Conclusions

We have calculated and discussed the dependence of energy E on angular velocity o
in the rotating nucleus. We have treated the rotation by means of the cranking model.
We included the short range pairing interaction via Hartree-Fock-Bogoliubov formalism.
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In order to obtain the illustrative results without getting involved into lengthy numerical
computations we have employed two simple models which, we hope, are not too trivial
so as they enable us to explain the nature of the rearrangement in HFB vacuum and the
resulting back-bending effect.

Our main conclusion is that in the correct application of the cranked HFB method
to nuclear rotation one has to take into account two quasiparticle states which are espe-
cially important in the region of the band crossing. It follows from considerations based
on our models that the very sensitive (with respect to the details of the model and its param-
eters) solutions corresponding to the mixing between the two branches, (the vacuum
and the two-quasiparticle excited ones) can be interpreted as unphysical and thus should
be excluded out of the game. The back-bending effect itself turns out to result essentially
as a rotational alignment of the quasiparticle states in line with the early prediction by
Stephens and Simon [7]. However, the effect is closely connected with the decrease of the
superfluid pairing correlations and the crossing of bands is closely connected with the
effect of gapless superconductivity.

Our model predicts also a possibility of another mechanism of the back-bending
effect viz. that arising in connection with the disappearance of pairing correlations. This,
however, depends on the strength of the pairing force; the effect may take place only if
the strength constant G of the pairing interaction is large enough.
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