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A general method is described by which a class of exact solutions of Einstein’s field
equations is obtained representing nonstatic spherically symmetric distributions of charged
perfect fluid. A class of static solutions is also obtained from the above as a special case.
The method is a generalisation of that described earlier by Chakravarty et al. for nonstatic
neutral fluid spheres. In addition to some previously known solutions, a new set of exact
solutions is found. The dynamical behaviour of one of them (a generalisation of Nariai’s
solution for a neutral fluid sphere) is briefly discussed.

1. Introduction

Nonstatic solutions representing shear free motion of a sphere of charged perfect
fluid having inhomogeneous density and pressure were discussed by several authors (Vaidya
and Shah (1967), Faulkes (1969), Banerjee et al. (1975). Chakravarty et al. (1976) gave
a method for deriving a class of exact solutions of Einstein’s field equations representing
shear free motion of neutral perfect fluid spheres. By this method they rediscovered some
of the solutions found by earlier workers and also found a set of new solutions. We shall
describe below (Section 2) a generalisation of this method which enables us to derive
a class of solutions representing shearfree motion of charged spheres of perfect fluid.
A class of static solutions is also obtained from the above as a special case. This method
enables us to rederive some of the known solutions and in addition gives us a set of new
solutions. In Section 3 we shall discuss the dynamical behaviour of one such solution,
which is the charged analogue of the solution of a nonstatic sphere of neutral fluid discovered
earlier by Nariai (1967).
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2. Method of integrating the field equations

Faulkes (1969) has studied the problem of charged spheres of perfect fluid in detail.
So we shall not write down the detailed field equations here and only quote some of his
results. Faulkes took the spherically symmetric line element in the isotropic form

ds® = e'dt* —e“(dr? + r*d0* + r? sin? 0dg?), )]

where w = w(r, 1) and v = w(r, ). Since the fluid is assumed to be perfect, the matter
energy momentum tensor has the following components:

T, =T; = Ty = —-p, Ti= 9

where p is the isotropic pressure and ¢ the mass density. Faulkes (1969b) then showed
that the key equation in this case is
o’R
ox?

= f(x)R*+g(x)R?, ?

where x = r? and R = e=“'?, f(x) and g(x) being arbitrary functions of x alone. From this
equation we obtain e“, then the equation corresponding to T T} gives
w2 O
e =,
&)

3

where ¢(t) is an arbitrary function of r. Thus the metric is completely determined. The
remaining field equations yield the values of p, g and the charge density o.

We shall now describe a general method for deriving a class of solutions of Eq. (2).
Let us write

R = (¢ +0)v(x), @

where & = &(r, 1) and 0 is a constant. Substituting this in (2) we obtain as first integral
the equation
&2 = B(x)&*(&* +al+b), &)

where prime denotes derivative with respect to x and a, b are constants. Further @ is de-
termined from the equation:

6(40*> —3a8+2b) = 0. 6)
The solutions of this equation are

_ 3a+(9a*>—32b)'"*
- 8

or

3a—(9a*—32b)"/?
0=0,= 2700 E0 (62)
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Further
B(x) =v"%  g(x)=20"% f(x)=3(a—46)"° M
v(x) is determined by the differential equation
v'? = K—h(0)v-?, ®)
where K is an arbitrary constant and
h(0) = 3a0 —66*—b. C)]
Equation (5) may now be integrated in the form
L=M+T, (10)
where
d(1/€) + v %dx (10a)

(1+a/E+b[ED)° T

and T is an arbitrary function of time. We now proceed to examine the values of L and
M in different cases. We first enumerate below the values of L in five different cases.

Case A, a=b=0, then L = ¢ % (1)
2
Case B, a#0,b=0,then L =—~1+a/¢. (12)
a
Case C, a# 0, a> =4b, then L = -——ln( 25) (13)
Case D, a,b,a’—4b #0, b > 0, then L —-I \/b ¢ +\/l+a/é+b/
’ ~ /b 2\/1) '
14
1 2bJE +
Case E, 4 #0,b<0, then L = ——sin~! 22¢F4 (15)

N Jai—4b ‘
Integration of (8), on the other hand, leads to the following different forms of v and M.

Case 1, K=h=0, then v; = A (const.) and M; = + 47 %x. (16)
1
Case II, K>0, h=0, then vy = JKx+land My = + ———7——, 17
= ! VK (VK x+1) an
where / is a constant of integration.
Case 111, K =0, h <0, then vy = (2/—h x+d)"'* and
1
My = + In(2/=hx+d), (18)

d]

2=
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where d is a constant of integration.
Case IV, K; h # 0, then v,y = (Kx?+2nx+n?/K+h/K)'?, (19)

where n is an arbitrary constant. Two subcases may now be distinguished:

1 Kx+n-— :—h
Case IVa, h <0, then My, = + = Ip —— Y (20)
2y+h Kx+n+\/—h
1 - Kx+n
Case 1Vb, h > 0, then My, = + ———tan™ ' ——7 . (21)
v +h vh

Any allowed combination of the first set of cases A —F with the second set 11V
will give us an exact solution representing a nonstatic charged fluid sphere by using
Eqs (4) and (10). If, however, T is not an arbitrary function of 7 but a constant then we
get the corresponding static solutions.

A;: Eq. (6) gives 6§ = 0. Hence from Eqgs (4), (10), (11) and (16) we obtain

R=AT+A 0" (22)

This is identical with the solution obtained earlier by Faulkes (1969) in the special case
when the total mass of the sphere vanishes but not the charge.

Uy

Ay: §=0and R = —"_ 23
i an My+T 23)
4ad
B,: 60 =0and R = ? . (24)
aH(T+ A 2x)—4

This is identical with a special case of the solution representing a nonstatic charged fluid
sphere found by Faulkes (1969b). This is the charged analogue of a neutral fluid sphere
solution found earlier by Faulkes (1969a).

By: =0 and R = 2(M—1;1LT3-:~ (25)

This is identical with a solution found by Banerjee et al. (1976), which is the charged
analogue of a neutral fluid sphere solution found earlier by Banerjee and Banerji (1976).

3 9a* 4 3
Biy: 8 ‘ , h = — *-g— and R = [-““—‘?"“” + "c—l] Uiy (26)

I
I

4 (Mg +T) -4 4
3 9a? 4 3
Biva: 6 = > , h= — ll and R = -»———»a——fw + e Upy- 27
4 8 a*(Myy,+ 1)~ 4
a’ avm
le 0=0,h=— —Z and R = W_—Wﬁ . (28)
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This is identical with a special case of the solution found by Vaidya and Shah (1967).

2

0=0l=a/2;h=-%and

and
a e(Mlll"T)"/z /
R = 5 | e e B (29)

This is identical with a special case of the solution found by Banerjee et al. (1975).

. a 1
Crya: 0=0 h=—a4and R = vy [eTM&-&Ti“?’_.;J’ 0
' av e(Mxv.*'T)"/z
6 = 0/2, h = ._a2/4 and R = »f'{(mﬁ;;/f’“*] B (30&)
e -1
(M vy +T)e/2
) avy | € +1
C]Vb: 0 = a/’4, h = 02/8 and R = WA{X [;(E:TT—)“/T-—?] . (31)
s 2 /bt 3a
D;: 0=3a8=vb2and R=vy| - "y + =|. (32)
(e\"B(M,+T)_ a_ -1 8
2./b
2 /b et MutD 3a
Dy 0=3a8 R=1ty] —F—5— + =—|. (33)

VB (M1 +T) a \ 8
e -] =1
2 Jb
In order to save space we shall not give expressions for £. R can be obtained from them
with the help of Eq. (4).

2 iE Vb (M1 +T)
D,,: =0 h=—band ¢ = — - N¥°F . (34)

(e‘/E(Mu("I‘T)_ a_ 2__1
2 /b

This is the charged analogue of the neutral fluid solution found by Nariai (1967). We
shall give a detailed discussion of the dynamical behaviour of this solution in Section 3.

0 =6y, h=h(0,), then & is given by (34). When a > 0, / is always negative but
when a < 0 it is not always negative and only those negative values of a are to be con-
sidered for which & < 0.

@ = 6,,h = h(8,) and & is given by (34). In this case 4 is always negative whena < 0
but not always when a > 0.
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Dyy: In this case both positive and negative values of 4 are allowed. Hence there is no
restriction on a.

2 'b"e(Mxv*'T}
¢ = v i (35)
o _ 4 Y
2./b
. —2b
Eny: 0 =6, #0, h =h() and ¢ = —_— e ; (36)
a—va>=4b sin (N —b (My +T)}
0 =8,+#0, h=hG6,) and £ is given by (36).
E 0 =0, or 6, and ¢ ~2b (37)
at =0, 0r 0, and & = — o — .
a P a—~a®—4b sin (N — b (Myy, +T)}
—2b
Elvb: 0 = 00 and é = (38)

a—va*—4bsin {N —b (Myyy+T)}

Our results can be summarised in the form of a compact rempe for constructing exact
solutions of the differential equation (2):

(1) Choose the values of the constants @ and b arbitrarily. This choice determines its class
A, B, ..., E. The choice of g, b determines 6+ A from Egs. (6) and (9).

(2) Now choose K arbitrarily and the values of A, K thus obtained determine the class I,
II, ..., IVb.

3. Dynamical behaviour of solution Dy,

Here

- Vi
2 \/b Ume b (My1+Ty)

R = foyy = )
oMty _ 2 ) _
2./b

Let us write

7} = i 2\/"'—hln S%’ Sl = Sl(t)i
Mpy+T, = + ! 1 VAY)) (39)
m 1= 2\/ n ( »
where Z = (I+2,/—hr?) = 1+yx,
=1land 2\/=h =y,
2./bS,Z

R =

(40)

szii- Y-
! 2./b
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Now replacing S, by 1/T and Z by y and introducing new constants which are related to
the constants of Eq. (40), Eq. (40) simplifies to

T

R = ) 41
(@ Ty = py—a @D
where a,, B and « are constants, i. e.
a, Ty '"*—p)*—«
ew/z — ( 14y B) . (413)

T

If we set & = 0, this reduces to the solution of Nariai. We shall now discuss the behaviour
of the above solution. Using Eq. (3) we obtain /2. If we put C = 27/T, we obtain

o2 alT?y—p*+a _Zz

@y e S @

where
S =(a,Ty '*~B)*—q, (43)
Z=a’T*y—p*+a. (44)

We can then calculate the pressure p, matter density ¢ and the charge density o from the

field equations,
8 4aiT* 2T S N 2T § 3712 45
"MET ez Tz e 7 T T @3

3T 12apyT?

8mp = 77+ e (S+w)'?, (46)
3a,yal’?
4no = * n—ljz—ym T3/S°. (47)

it is evident from (47) that the constant « can take positive values only and o = 0 cor-
responds to the case of uncharged fluid sphere discussed earlier by Nariai. We can also
write the total charge up to the co-moving radius as (Bekenstein (1971))

: ayat?r?
q(r) = 4n Jesm/zarzdr ==t _13/2 32 ¢ 48)

nt/2y
0

Hence at the boundary r = ro, g(ro) gives the total electric charge on the fluid sphere

1/2.3
apye’trg
ro) =€ = £ ~—rr—r. 49

q(ro) x nx/zyg/z (49)
If we put a = 0 or y = 0, the line-element goes over to the open cosmological model
of Einstein-de Sitter, where space time is spatially flat and is infinite in extent; ¢ then

vanishes.
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The interior metric (1) can be matched across the moving boundary r = r, (in comov-
ing co-ordinate) with the Reissner-Nordstrom solution

2 dne®\ 2 4re’ "',
ds* = (1— oy lf;) di*— (1 i ﬁf—) dr? = P(d0 +sin? 0dg?),  (50)
r r r ¥

provided at the boundary (Faulkes (1969b))

p(ro. 1) = 0, (51)
4ne?
- .2 20/2 2 2 wol2 2 /2
2m— ——e @02 = L iaraed T Ly 2iniZe't — rlwpe (52)
0

and Eqs (49) are satisfied. Here prime denotes derivative with respect to the radial

co-ordinate. Further

™ ¥
r=ree’",

~ ’ 2 ~1
R Y FoWy 2m 4ne
t = J e (]-}- —'T){l" ;‘—Ozm + rt%;m} dt. (53)

From Eq. (52) we obtain

T? =

T? [2m  4a 4alyT*
o | 313)2‘8 =) (54)
So Lro Yo So¥o

Since R = 0 when T = 0, the equality sign in (54) holds for the maximum or minimum
volume of the fluid sphere. Hence for turning points we have from Eqgs (45) and (51)

Fo_2al (55)
Savs
which reduces to
. 4yalT?
So= - Gom e (So+ )2, (56)
oYo

Now, §, will have positive or negative values depending on the signs of the arbitrary
constants 4, and y. Let us choose our arbitrary function 7 of ¢ in such a way that T > 0.
Since e®’2 = S/T by (4la), we have S > 0. Further ¢"/2 = Z/S by (42). Hence Z > 0.
Further we must have y > 0 in order that ¢ and ¢ may be real. From Eqs (46) and (47)
we find that o is always greater than o.

In order to find the condition that the volume of the 3-space is an extremum we must
find out the turning points of ¢“2, The volume will be minimum or maximum depen-
ding on whether

. . 2yaiT? |: 2a,T 2
SoT—S,T = 1- (So+u)"
U TS L s
" 2yaiT® Z, _ 2ya T 2
Sive  Se Sty

is positive or negative.
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Case . y > 0; a, > 0. Here the turning point is a maximum volume and there will be a
collapse to a singularity. From Eq. (46) the mass density is always positive throughout
the distribution.
Again, differentiating Eq. (45) with respect to r, we obtain
8y2aiT*r

8np = — '—5—,3—‘;——2—24— [(x—ﬁz) (afTZ;_r-%-Za,Tﬂy'"/2)+3(a—ﬁ2)2+22017"ﬁy“""2}

. .. 8yr .
(T3~ TT) J; (20aiT?y 2 +.Spa, Ty~ 7).

At the turning point T = 0 and T has the value given by Eq. (55). Under these conditions
we find that p’ is negative when ff > 0 and a« 2> 2. Hence pressure increases monotonically
inward from zero value on the boundary. So pressure is everywhere positive inside the
sphere when it has extremum volume. If we further assume that the arbitrary function
of time T is such that T is negative, then the positivity of pressure is ensured everywhere
at all instants of time.

Case II. ¥ > 0; a, < 0. Here also the turning point is a maximum volume and there
will be a collapse to a singularity. The mass density remains always positive everywhere.
But nothing definite can be said of the nature of pressure in this case. But if we further
assume that f < 0 and x > 82 and T < 0, then the pressure always remains positive
everywhere as in case 1.

Case IIl. y < 0, a, > 0. Here the turning point is a minimum volume and hence there is
a bounce. If § > 0 and « > 82 the pressure remains positive everywhere at the turning
point. However nothing definite can be said about the sign of pressure at other instants
of time. Although the mass density becomes negative at the turning point one cannot
be definite about the sign of density at other instants of time.

Case IV. y < 0, a; < 0. The turning point being a minimum volume, it is again a case of
bounce. If « > B2 and B < 0, then the nature of pressure and density is similar to the
case 111
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