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EXACT SOLUTIONS FOR A VECTOR MESON IN QUANTIZED

FIELD OF A MONOCHROMATIC ELECTROMAGNETIC PLANE
WAVE

By F. I. FEDorov, A. F. RADYUK AND V. G. ZHULEGO
Institute of Physics of the BSSR Academy of Sciences, Minsk*
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The exact solutions for a vector meson in a quantized plane-wave external field are
obtained. The expressions for 4-momentum of the particle and wave system are derived
for each of three particle spin states.

The exact solutions of the Klein-Gordon and Dirac equations for particles in a quan-
tized field of a monochromatic electromagnetic plane wave with linear polarization have
been found for the first time by Berson [1]. Later these solutions have been generalized
to the case of an arbitrarily polarized electromagnetic wave [2]. Some different aspects
of the problem have been considered in Refs [3-5].

One encounters great mathematical difficulties trying to obtain the exact wavefunc-
tions describing particles with higher spins in an external electromagnetic field. The
covariant method [6, 7] for deriving the wavefunctions of particles with arbitrary spin
in a classical electromagnetic plane-wave field enables us to avoid, to a certain extent,
the difficulties in solving similar problems for a quantized electromagnetic field. The
present authors used this method to obtain the wavefunctions for a vector meson (spin 1)
in a quantized field of a linearly polarized monochromatic electromagnetic plane wave.

We start by considering (see [8]) the equation

[ﬁz(éi— ieg A+ é (K1P+K21_’)/3mF;n+m] py=0. ¢))

Here B, are the Duffin-Kemmer matrices, B, = B,8,— B.B; and ky, k,, respectively, are
the particle parameters expressed in terms of the static anomalous magnetic moment
(AMM) and electric quadrupole moment (EQM); P and P are the projective operators
denoting, respectively, the vector and tensor parts of the 10-component wavefunction v,
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0, = 0/0x);, x = (x)) = (x, it), | = 1, 2, 3, 4. The vector potential 4, satisfies the Lorentz
gauge 0,4, = 0 and is expressed through the creation ¢* and annihilation ¢- operators of
photons with the 4-momentum k = (k, ik,) and polarization ¢':

A= W (e rete ™), @ =kx=kx, Kk*=0. )
The c¢* operators in (2) are taken in the coordinate representation [9]
¢* = (1/y2) (£ £y
According to [1] the wavefunction is defined as follows
P(x, &) = Uy, U =exp{i[gx+3 @0} —¢H]}, 3)

where ¢ is a constant 4-vector. We use (1) to derive an equation for the unknown func-
tion x(&)

ky' +2i(kP+x,P) [ka]y —2i(ic+m)y = 0 4)
with the help of the operator identity
UT(C£09U = e¥2(E£0), U' = exp {~ilgx+} 90 -¢D]}
Here
[kd] = ka—ak, d=ap, a=el(kV)"?,
c=b—18%, b=gqg—eya, y = dyldt.

The function y as well as the result of action of an arbitrary operator r can be written

in the form [7]
u ar

where u is a 4-vector, o = (x;,) = —a is an antisymmetric tensor of the second rank with
six independent components, [u - r] = ([u - r},) = (wr,—ru,) = u - r—r - uis the alterna-
ting dyad, ar = (a;,r,). Equation (4) is thus reduced to a system of two equations

o'k +20c+ 2imi, [k - alu’ —2imu = 0, (6)
o = mH(@i/2) [k - u]’ +ilc - ul+x,([¢'a - k]+[a - «'k))}. @)

From (7) we can dérive the tensor a. Indeed, multiplying (7) by @ and differentiating
it with respect to £, we obtain

o'a = i2m)~ (au)" k+ 0, [(eka)a—a*ak]’, 0, = K /m. ®)
Similarly, we derive
o'ka = —ipm=(dw)’, p=kq, d=a—(ab)u 'k, )]
o'k = im [3kw) k+[c - ulk—po, (du)k]’.
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From (8) and (9) we have
[o'a - k] = im™* {[[c - ula - k]+ o(u(du) [k - a}+a*Tk < [c - u] K])'Y.
In the same manner we obtain
[’k - al = im{¥(kw)' [k - al+ [lc - ulk . al+ pos(du)a - k1}'.
As a result, we have
o = im {4k - ul' +{c - ul+ 0.(3kwy"[a - k}+ [[c - uja - k]
+[a - [c - ulk]) + 02Qu(du) [k - al+a?[k - [c - u]k])'}. (10)

The tensor « is expressed through the unknown vector # and the constant 4-vectors £, a,
g. The substitution of (10) into Eq. (6) results in a fourth-order equation for the unknown
vector u

2 k) Pk +{c ul"k+[k - u]"c+2([c - uJe—m*u+mr,[k - alu’)
+ ool (ku)"'d — (duy k] +203{ — 2u*(du) "d+ p[u - d]'c
+a*(u[u - ¢]"k+([c - u] "ke)k)+((au) [c - k])'e+((ku) [a - c])'c} = 0. (11)
Subsequent multiplication of this equation by the vector & gives the relations
ku'+2[gku—cu—po,(dw)] =0, g = p(c*+m?),

which along with (11) provide the second-order equation for the unknown vector u({)
[(c—gkulk+[c-ul"k+[k-ul'c+2[(cu)c—pgu+mr[k-alu’]
+20,{pu[(c—gk)ul'd+pu[u - d])'c+((au) [c - k])'c+((ku) [a : c])'c}

+203[ —p*(du)'d+a*([c - u]"ke)k +pa*[u - ¢}'k] = 0. (12)
According to [7} we introduce the following basic vectors
kidoe=c—p ek, v=1(0)= (1" "Cmmkndg,)- (13)

The vector u is expanded now as follows
u = nik+nd+nze+na. (14)

Here the coefficients 1, 115, 13, 4 are the unknown scalar functions of £. These functions
satisfy the system of four equations resulting from (12)

ny = (1/2)n5 + gnz—a’ens, (15)

1y +(ega’ 0, + Iy —7_n3 = 0, (16)

ny +(eoa’e + Qs +a’m™t_ny = 0, (17)
(1—pa®e)ny +(—e0a’or+g)a = O, (18)

where o, = K,/m, T- = eg—K4, Ky = m(K,+K;).
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Equation (18) gives
na = CB7'?H,(0) exp (-0’ [2). (19)

Here

B=1-—pa’e;, o=p" (=1¢+x),
= 1—e2a*ly, « =epgajur®, n=0,12, ...

H (o) are the Hermite polynomials and C, is the normalization constant. From the finiteness
of the solution of (18) we have

g% = —m?*+2u?[(n+ D2 =132+ epa’ 0,/27%]. (20)

Due to (5), (10), (14), (19) we obtain a unique solution of the problem

imnv
Xl = ( ;:4 )9
oy = [v- (c—eoa’0.k)]na+po,[d - vlns+G—noa®) [v- klny. (1)

Now (16) and (17) ought to be solved in order to construct two other solutions. With (16)
and (17) solved we readily obtain from (15) the function n,. Below we deal with some
particular cases because the solution of the system for a general case is very cumbersome
in practice. »

1. Neglecting the particle interaction due to the particle extra moments, i. e. consider-
ing x; = k, = 0, we find from (16) and (17)

+ . 1/2
(Zi) = ci(ilml ﬂal)”n(oexp[—%(cziieolalm“”é)l (22)

g% = —m?4+2ut*(n+1/2— 12?2+ ela?/8mt?). (23)

2. Let us consider the neutral vector particle (¢, = 0). In this case the particle inter-
action with the electromagnetic field is due solely to the extra moments x, and x,. From
(16) and (17), with e, = 0, we have

+ . 172
(Zi) = ci(ilml M)Hn(é)exp‘[%(iilalm‘”’m—6)51, (24)

q* = —m*+2u(n+L1+a*%/8m). 25)

The above results describe exactly the solution of the problem for the neutral vector
meson.

3. It should be noted that the electric charge ¢, and particle extra moments enter,
as additive parameters, the exact wavefunction of a vector meson interacting with a clas-
sical electromagnetic plane wave [10]. Equations (16) and (17) for the case of interaction
with a quantized electromagnetic field contain nonadditive terms (with respect to these
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parameters) which can be neglected provided the electromagnetic wave frequency is suffi-
ciently large. From (16) and (17) under conditions eya?g; < 1 (i = 1, 2) we have

+ .12
<Z§> = ci(ilml /[a|>Hn(5)exp[—%(CZiiialm‘”zf—é)], (26)

q* = —m? +2ut’(n+%—1*k*[2+ a*1% j8m?). 27

It is worth noting that the smallness of the parameter 1 = eya?/m at high electro-

magnetic field frequencies enables us to express the unknown functions #, and #; in the
form of an infinite series.

The 4-vector g represents the total momentum of the particle and electromagnetic
field system. From (20), in particular, we find

g = p+7*[(n+1/2)p'? —*K?[2+ eoa® 0,/ 20k,

2

pr = —mz’ (28)

where p is the free particle energy-momentum 4-vector. In particular cases one can derive
from (23), (25), (27) the expressions for g for each of the three spin states.

The wavefunctions of the vector meson in the classical electromagnetic wave field
contain the tachyonic modes (see [11-13]). The problem of existence of tachyonic modes
in the case of a quantized field has not yet been solved.
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