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MASS SPLITTING IN HIGH DIMENSIONAL EXTENSIONS OF
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A discussion of the relevance of high dimensional extensions of general relativity
for the mass splitting problem in particle physics is given.

1. Introduction

During the past decades many attempts have been made to combine space-time
(““external’”) and internal symmetries in a nontrivial way. ‘“Nontrivial” in this .context
means (a) the total symmetry group is not a direct product of the external (Poincaré-)
group and the internal group; (b) the total symmetry group allows for a mass splitting
within internal symmetry multiplets as it is experimentally observed.

Powerful theorems [1-5] severely restrict the possibilities to solve these problems.
It is possible, however, to solve (a) (but not (b)) as long as the total symmetry group is
generated by a Lie algebra or a graded Lie algebra (of finite order) [2-6]. To be more
precise: as long as the total symmetry group is generated by a (graded) Lie algebra which
contains the Poincaré algebra as a subalgebra, the spectrum of the relativistically invariant
mass operator is continuous or consists out of one point [3-6].

In this note I shall consider a Lagrangian describing “‘gravity” in a high dimensional
superspace with commuting vaiiables coupled to a scalar fleld. I shall demonstrate that
this theory is a very hopeful candidate to solve the mass splitting problem ((b)).

2. The superspace

I shall consider a Riemannian superspace of (N+4) dimensions. The variables will
be labelled

(xw irx)3 n=1, 2, ..o N, (1)

and they all commute with each other.
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The flat structure of the space is as follows: the x, are elements of ordinary Minkowski
space with metric say, diag (— + + +). The i, 1 propose to consider as elements of the
parameter space on which the elements of some given internal group G act. To proceed
further it is to be observed that the ‘“‘relative normalization” of coordinates is not yet
fixed. By “relative normalization of coordinates” I mean the following: In special rela-
tivity the proper coordinates to make up an invariant line element are not x and f but x
and ¢t and the line element in the metric given is

ds? = dx2—c*dr?. [9))

Similarly I now write the line elements for the superspace
N
ds* = dx*—cdt* +ab* Y di}. 3
n=1
In case the internal symmetry group is not simple but of the form say, G = G; xG,,
one would replace this formula by

Ny N
ds* = dx*+c*dt* +o,b7 Y dil+a,b3 ; diZ. 4)
n=1 n=Ny+1

0,0, 0, are sign factors.

It is now an important observation that the algebra of symmetry transformations
which appears in the formulation of the so-called “‘no-go theorems” [1-6], is a (graded)
Lie algebra (of finite order). All these (graded) Lie algebras have the particular property
that their elements are linear transformations of the parameter space

{(z)) = (xp ip),a=0,1,2, ..., N+ 3} (5)

There are solutions for the first problem among those sets of linear transformations [7-10].
There will be, however, no solutions for the second problem, (b) [3, 6].

Looking at the problem from this point of view it appears to be most natural to
consider a theory which has a symmetry group the group of all (linear and nonlinear)
transformations. General relativity is such a theory for the fourdimensional external
space. Therefore I shall now consider an analogous theory in (4+N) dimensions.

3. Action and field equations
I shall now consider the theory described by the following action
S = [ d*"z(VIgl (R+ L)} ©)
with
Ly = —3 & ,06°—L m?d%. 7

All quantities here have the usual meaning except that they are to be understood in (4+ N)
dimensions. The field equations following from (6) are

Gy = Rgy—0g,R = kToy ®
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and
® —m?d = 0. 9

Semicolon means covariant derivative. Consider now the last equation. In flat space it
is the ordinary Klein-Gordon equation in (N-+4) dimensions and the spectrum of the
Laplacian will be continuous. Equation (9) may be rewritten as

(A —m*)d(z) = 0, (10)

4 being the Laplacian in (N +4)-dimensional curved space. It is a natural procedure to
determine the mass spectrum from the eigenvalues of the Laplacian. Equation (10) then
states the hypothesis that up to a universal constant the eigenvalues of the Laplacian are
to be identified with masses.

An example will make clear how things will work. Let the superspace be (N+4)
dimensional flat space with metric diag (— + + +¢...6) and G = SO(N). The latter group
acts on the N internal coordinates i,. Then the above equation may be wirtten as

N

. il 2)@( ) =0 11)
— - ,i) = 0.
ot T E L )T (

n=1

Thus we get a mass spectrum for the physical mass given by the eigenvalues of

62
8,0 (12)

but it is continuous. But now the parameter space the elements of SO(N) are acting on
may as well be the surface of the unit sphere in N dimensions (this being a curved (¥ —1)
dimensional space). Then we have

(Acxt_Aint~m2)¢(x, l) =0, (13)

where 4.,,, is given by the expression (7) and 4,,, has the eigenvalues (L+N—-2). L = 0,
1, 2, ... ®(x, i) is given as the product of a plane wave in x and a spherical harmonic in i.
The interpretation of L is fixed by the observation that 4;,, is the quadratic Casimir operator
for SO(N).

High dimensional versions of general relativity are by no means a new object; they
rather found continuous interest from the early days of general relativity on [11-24].
In particular the sample given above has been discussed in more detail by Rayski [13-16]
and Cremmer et al. [20-22]. The latter authors show that an exact solution exists for the
system (8), (9) with the properties described in the example, whereas Rayski discusses in
particular the consequences for the classification problem in particle physics.

In the example given above the (constant) curvature has been inserted “by hand”.
One would like to determine the curvature by a set of dynamical equations. But precisely
these equations are given by the (coupled) system (8) and (9). Whereas the masses gener-
ated by the mechanism described in the example are believed to be very large [13-16,
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19-22], it has been speculated already by Rayski [15] that a nontrivial Riemannian struc-
ture (i. e., nonconstant curvature) may be related to the mass splitting in internal symmetry
particle multiplets. The analysis of this note (including the discussion of the no-go the-
orems) increases this hope.

It would be beyond the purpose of this note to construct explicit examples for internal
spaces with nontrivial Riemannian structure; it is however, elucidating to consider at least
qualitatively such an example.

Consider a fourdimensional version of the field equation (9). It may be written as [25]

1 S
e O/~ 8 8,0) P —m?D = 0. (14
7= NETE
The Newtonian approximation is described by
2V
goo = 1+ o (15)
2V _
g = — (1._ —2) 5ik, t, k= 17 2; 3: (16)
4
kM
V=-—. a7

Seeking solutions of (14) where the time dependence of @ is given by a factor exp (iEr)
one finds that for large r2 = X2 equation (14) takes the form of the (nonrelativistic) Schro-
dinger equation for the H-atom,

AP +[k—UFP)]Y = 0, (18)
o4

U= — —, (19)
r

where 45 is the threedimensional Laplacian, provided, 0¢/dr falls off rapidly enough for
increasing r. A similar phenomenon has been observed [26] for the (exact) Schwarzschild
solution.

In the Schrédinger problem bound states occur for k& < 0, the spectrum of negative
k’s being discrete. In the present situation, however, k is to be replaced by E? which is
positive, provided the flat metric is Minkowskian. If it is Euclidean, k is to be replaced
by — E? being negative and we are concerned asymptotically with the bound state problem
of the H-atom. An Euclidean solution may be useful if it is taken to describe the internal
part of the space. A detailed analysis of these systems will be dealed with in forthcoming
work.

It is elucidating to compare this approach with the usual discussion of spectrum
generating wave equations (compare Ref. [27] for a review). The notorious problem in
these approaches is to find arguments to write down the spectrum generating terms; it is
precisely this problem the present approach promises to solve.
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4. Remarks concerning interpretation

A central role in general relativity is played by the equivalence principle. The state-
ment is that the gravitational interaction can be replaced by curvature of the space. In the
formalism the principle appears as the statement that a pointlike particle moves along
geodesics. Such a notion however, is not adequate for an elementary particle. The equa-
tion of motion for such a particle is the field equation (9). The similarity lies in the fact
that again “interaction™ is replaced by “‘curvature”.

Curved superspaces have already been discussed in the literature {11-24]. The main
motivation was to find a unified picture for gauge models like electrodynamics and general
relativity. More recently [20-24] dual models were the motivation for studying high dimen-
sional spaces. A traditional problem in the discussion of superspaces is that of the addi-
tional (internal) variables. The problem does not occur for anticommuting internal variables
[7, 8] since these variables can be eliminated from the Lagrangian. A classical escape
for commuting variables (compare, e. g., Ref. [19]) is to assume periodicity with slow
variation for the unobserved variables; correspondingly the theory contains particles
with very high masses [13]. Another possibility would be to impose boundary conditions
such that asymptotically the solutions of the field equations do not depend any more on
the internal variables. Yet another possibility would be to consider transition matrix
elements which are integrated with respect to the internal variables, like in S-matrix theory
where all variables which are not observed in a certain scattering experiment are summed
over.

This interpretation problem, however, appears in any superspace theory and is not
specific for the particular theory given here. As a matter of fact in particular the mixing
of external and internal variables is just what one wants to do.

I am indebted to Drs N. Baaklini, C. Nach, D. P. O’Brien, Professor L. O’Raifeart-
aigh, and Drs J. Rawnsley and M. Scheunert for helpful discussions.
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