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FUNDAMENTAL RELATIVISTIC ROTATOR∗
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Professor Jan Weyssenhoff was Myron Mathisson’s sponsor and col-
laborator. He introduced a class of objects known in Cracow as “kręciołki
Weyssenhoffa”, “Weyssenhoff’s rotating little beasts”. The Author describes
a particularly simple object from this class. The relativistic rotator de-
scribed in the paper is such that its both Casimir invariants are parameters
rather than constants of motion.

PACS numbers: 03.30.+p

1. Historical introduction

As you know from the talk by Professor Trautman, there was a spe-
cial relationship between Mathisson and my teacher, Professor Weyssenhoff.
Socially Professor Weyssenhoff was, as we would say it today, Mathisson’s
sponsor. Scientifically, however, he was his follower. In particular, Profes-
sor Weyssenhoff’s life-long fascination with rotating bodies was undoubtedly
a result of his collaboration with Mathisson. I remember very well, if it is
possible at all to remember something very well after more than 50 years,
that Professor Weyssenhoff’s fascinations were not always well received. This
could be seen from the expression “kręciołki Weyssenhoffa”, “Weyssenhoff’s
rotating little beasts”, which was used to describe the object of his studies.
Serious people were supposed to do nuclear physics. But 50 years is a lot
in terms of human experience. Today nuclear physics does not seem to be
a particularly exciting subject, while “kręciołki Weyssenhoffa” are, as I will
try to convince you, a way to study some difficult and not well understood
problems in special and general theory of relativity.
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2. The rigid body of Hanson and Regge

I shall not describe here Professor Weyssenhoff’s contributions since they
are actually quite well known and have been frequently quoted in scientific
literature [1]. Instead I will start my consideration with the notion of rela-
tivistic rigid body introduced by Hanson and Regge [2]. According to Hanson
and Regge a relativistic rigid body is a tetrad associated with a position and
moving in accordance with some relativistically invariant laws of motion. It
is a simple matter to see that a tetrad is fixed by three null directions. Thus
the rigid body of Hanson and Regge can be equivalently characterized as
a dynamical system described by position and three null directions. This
gives nine degrees of freedom and an enormous variety of a priori possible
relativistically invariant actions. It means also that nothing particularly
useful can be obtained from so general a scheme.

3. A rotator as the simplest clock

In Newtonian physics the simplest clock is a rotator which consists of two
point masses connected by a rigid and massless rod of length l. A rotator is
not a rigid body of Euler. This is seen from the fact that a rotator has five
degrees of freedom while an Eulerian rigid body has six degrees of freedom.
5 = 3 + 2. This admittedly simple observation leads me to the following

Definition 1. A relativistic rotator is a dynamical system described by
position and a single null direction and, additionally, by two parameters,
m (mass) and l (length).

I will denote by x the space-time radius vector and by k the null direction.
I will also denote by ab the scalar product of vectors a and b:

ab = a0b0 − a1b1 − a2b2 − a3b3 .

It is a simple matter to see that the most general relativistically invariant
action for a system described by position x and null direction k has the
following form:

S =

∫

dτ(−)m
√

ẋẋf

(

l2
k̇k̇

(kẋ)2

)

. (1)

Here τ is an arbitrary parameter, a dot denotes differentiation with respect
to τ and f is an arbitrary function. It would be dangerous to choose this
function at random since we know from the work of Professor Weyssenhoff
that this can lead to pathologies such as superluminal motions. In the
following I will fix the function f in a way suggested by the famous work of
Wigner [3].



Fundamental Relativistic Rotator 111

Wigner says that relativistic quantum mechanical systems should be clas-
sified by means of unitary, irreducible representations of the Poincaré group.
Unitarity is a difficult notion which has no classical counterpart. Irreducibil-
ity, however, is a simple algebraic notion which does have its classical coun-
terpart. In our context irreducibility means that both Casimir invariants of
the Poincaré group should have fixed numerical values i.e. they should be
parameters rather than constants of motion. This leads me to the following

Definition 2. A dynamical system is said to be phenomenological if its
Casimir invariants are constants of motion. A dynamical system is said to
be fundamental if its Casimir invariants are parameters, not constants of
motion.

To apply this definition I perform the following calculation: for the action
(1) I calculate the Noether constants of motion Pµ and Mµν , the Casimir
invariants PµPµ and WµW µ, where

Wµ = −
1

2
εµνρσMνρP σ

is the Pauli–Lubański pseudovector. I put forward the requirement that
both Casimir invariants should be parameters i.e. should not depend on
initial conditions. This gives me two differential equations for one function
of one real variable ξ = l2(k̇k̇)/(kẋ)2. Remarkably enough, both equations
can be simultaneously solved and this gives the result summarized in the
following

Theorem. There is only one relativistic rotator which is fundamental. Its
Hamilton’s action has the form

S =

∫

dτ(−)m
√

ẋẋ

√

√

√

√

1 +

√

−l2
k̇k̇

(kẋ)2
. (2)

For this rotator

PµPµ = m2 , WµW µ = −
1

4
m4l2 .

4. Some applications

Eq. (2) is a beautiful formula. The beauty is connected in part with its
property of being uniquely determined by a set of well defined ideas. Beau-
tiful formulae are important for theoretical physics because they convey in
a compact form many ideas which might be difficult to elucidate separately.
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But Eq. (2) can also be used to discuss some important theoretical issues,
for example, the so called clock hypothesis, which says that a moving clock
shows its proper time even when accelerated. Professor Weyssenhoff did
not believe in the clock hypothesis. While explaining this to us he would
take off his watch and say: look, this clock now does indeed show its proper
time, however, if I drop it, it surely will not show its proper time anymore.
This common sense approach was probably a trace of the fact that Profes-
sor Weyssenhoff started his scientific career as an experimental physicist. He
did his Ph.D. Thesis at ETH in Zurich. Einstein quotes this Thesis in his
little known monograph on Brownian motions. Professor Weyssenhoff and
Einstein knew each other very well, so we might guess that Einstein’s own
position on the clock hypothesis was similar.

One has to realize that all sufficiently accurate real clocks are very com-
plex devices. Moreover, they work the way they do because they are quan-
tum mechanical objects. By contrast, Eq. (2) describes a simple classical
device which is an ideal clock. It is ideal in two different ways in which
this word can be understood: it is ideal because it is perfect, experiences
no fatigue or friction, and it is ideal because it is a mathematical construct
not related to a real mechanism. To check the clock hypothesis for the ideal
device described by Eq. (2) one has to perform the following calculation: one
has to assume that a certain combination of x(τ) and k(τ) is given because
the clock is accelerated by some external force, and to calculate the motion
of the “pointer” k(τ) on the unit sphere of null directions. This calculation
is actually quite difficult but it is clear that to obtain anything resembling
the clock hypothesis one must assume that the motion of the entire device
is adiabatic with respect to the motion of the “pointer” k(τ). “Adiabatic”
means that the null direction k must perform an extremely large number of
cycles during each time in which the velocity of the entire device changes
in a significant way. I am sure that this condition is necessary but I do not
know if it is sufficient.
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