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Mathisson’s spin-gravity coupling and its Larmor-equivalent interac-
tion, namely, the spin-rotation coupling are discussed. The study of the
latter leads to a critical examination of the basic role of locality in rela-
tivistic physics. The nonlocal theory of accelerated systems is outlined and
some of its implications are described.
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1. Introduction

The proper theory of the motion of a spinning mass in a gravitational
field is due to Mathisson [1], Papapetrou [2], and Dixon [3]. A main aspect
of this theory, which already appears in the work of Mathisson [1], is the
existence of a spin-curvature force

Fα = −
c

2
Rα

βµνu
βSµν . (1)

Here uµ is the unit four-velocity vector of the spinning mass; that is, uµ =
dxµ/dτ , where xµ = (ct, x, y, z) and τ/c is the proper time. The signature
of the metric is +2 throughout this paper.

In the linear approximation of general relativity, with the spinning mass
held at rest in the stationary exterior field of a rotating central source and
keeping only first-order terms in spin, Fα = (0,F ), where [4]

F = −∇(S ·ΩP) . (2)
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Here ΩP is the precession frequency of a test gyroscope held at rest outside
the central source of angular momentum J ; far from the source,

ΩP =
G

c2r5

[

3(J · r)r − Jr2
]

, (3)

so that cΩP = Bg is the familiar dipolar gravitomagnetic field of the source.
It follows from Eq. (2) that one can define the Hamiltonian for the spin-

gravity coupling as
H = S ·ΩP . (4)

This Mathisson Hamiltonian is a direct analogue of −µ · B coupling in
electrodynamics [5]. Imagine now the test gyroscope that is held at rest but
precesses with frequency ΩP as before. If the gravitational interaction is
turned off, the gyro keeps its direction fixed with respect to the background
global inertial frame by the principle of inertia. The former precessional
motion is recovered, however, from the viewpoint of a local observer that
is at rest in a frame of reference rotating with frequency Ω = −ΩP. This
is an instance of the gravitational Larmor theorem [5], which follows from
Einstein’s principle of equivalence. To this latter motion in the rotating
frame, one can associate a new Hamiltonian H′, which can be obtained from
H by replacing ΩP with −Ω . Thus the Hamiltonian due to the coupling of
spin with rotation is given by

H′ = −S ·Ω . (5)

The classical couplings (4) and (5) are expected to be valid for intrinsic spin
as well. This is mainly based on the study of relativistic wave equations
in gravitational fields and accelerated frames of reference, see [6] for some
examples; a more complete discussion as well as list of references is given
in [7].

It follows from the inertia of intrinsic spin that to every spin Hamiltonian
in a laboratory fixed on the Earth, one must add

δH ≈ −S ·Ω⊕ + S ·ΩP⊕ . (6)

For a spin-1
2 particle, the spin-rotation part of Eq. (6) implies that the

maximum energy difference between spin-up and spin-down states is ~Ω⊕ ≈

10−19eV. As pointed out in [8], the experimental results of [9] constitute an
indirect measurement of this coupling. Further evidence in this direction,
based on an analysis of the muon g − 2 experiment, is discussed in [10];
for other observational aspects of spin-rotation coupling see [7]. Moreover,
the corresponding energy difference for the spin-gravity term in Eq. (6) is
~ΩP⊕ ≈ 10−29 eV. As discussed in [7], even in a space-borne laboratory in
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orbit around Jupiter, this Mathisson coupling would still be too small to be
measurable at present by several orders of magnitude. An interesting recent
discussion of the theoretical as well as observational aspects of spin-gravity
coupling is contained in [11].

Finally, a fundamental aspect of the Mathisson coupling should be noted
here: For a classical gyro, its spin is proportional to its mass and the gravi-
tational force (2) is then proportional to the mass of the gyro, as it should
be; however, for a spin-1/2 particle, the magnitude of spin is ~/2 and the
corresponding gravitational Stern–Gerlach force (2) violates the universality
of free fall. Thus the weight of a neutron with spin up is generally different
from the weight of the same neutron with spin down; however, this effect is
too small to be measurable in the foreseeable future [7]. Nevertheless, this
observation indicates that the simple coupling (4) for intrinsic spin as well as
its Larmor-equivalent (5) could have consequences that are of basic signifi-
cance for relativity theory and gravitation. This important point constitutes
the main theme of this paper and will be illustrated in subsequent sections.
In practice, it is indeed much simpler to work with (5) than with (4); there-
fore we concentrate on the photon spin-rotation coupling in the rest of this
paper.

2. Photon helicity-rotation coupling

Consider a thought experiment in which an observer rotates uniformly
with frequency Ω about the direction of propagation of an incident plane
monochromatic electromagnetic wave of frequency ω. The object of the
experiment is to measure ω′, the wave frequency according to the rotating
observer. Specifically, we assume that the wave propagates along the z
direction and the observer follows a circle of radius r about the origin of
spatial coordinates in the (x, y) plane. The natural orthonormal tetrad
frame associated with the observer is given by

λµ
(0)

= γ(1,−β sin ϕ, β cos ϕ, 0) , (7)

λµ
(1) = (0, cos ϕ, sin ϕ, 0) , (8)

λµ
(2) = γ(β,− sin ϕ, cos ϕ, 0) , (9)

λµ
(3) = (0, 0, 0, 1) . (10)

Here ϕ = Ωt = γΩτ/c, β = rΩ/c, and γ = (1 − β2)−1/2. The observer’s
local temporal axis is along its four-velocity λµ

(0) and its spatial frame λµ
(i),

i = 1, 2, 3, is such that its axes point along the radial, tangential, and z
directions, respectively.
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According to the standard Doppler effect, the frequency of the wave
measured by the observer is ω′

D = −kµλµ
(0) = γω, where the Lorentz factor

accounts for time dilation. In this general approach, the rotating observer
is assumed to be pointwise inertial and hence at rest in a comoving inertial
frame (“hypothesis of locality”) and the Doppler effect follows from the in-
variance of the phase of the wave under Lorentz transformations between
the global background inertial frame and the instantaneous inertial frames
of the observer.

There is, however, another way to measure frequency based on the fact
that at least a few periods of the wave must be registered before the observer
can determine ω′. To this end, we suppose that the observer can make
pointwise determinations of the incident field. The result can be expressed
in terms of instantaneous Lorentz transformations or equivalently as

F(α)(β)(τ) = Fµνλµ
(α)λ

ν
(β) . (11)

This quantity, upon Fourier analysis, yields [12]

ω′ = γ(ω ∓ Ω) . (12)

The upper (lower) sign refers to an incident positive (negative) helicity wave.
For the photon energy, we find that

E′ = γ(E ∓ ~Ω) , (13)

where ±~ is the photon helicity. Thus Eqs. (12) and (13) contain, in addition
to the transverse Doppler effect, the influence of the spin-rotation coupling.
Eq. (12) can be written as ω′ = ω′

D(1 ∓ Ω/ω), where Ω/ω is the ratio of
the reduced wavelength of the radiation λ/(2π) to the acceleration length L

of the observer, L = c/Ω . The Doppler effect is recovered when this ratio
vanishes in the JWKB limit.

For oblique incidence, the analogue of Eq. (13) is

E′ = γ(E − ~MΩ) , (14)

where ~M is the total angular momentum of the radiation along the axis of
rotation. Thus ω′ = γ(ω − MΩ), where M = 0,±1,±2, . . . , for a scalar or
a vector field, while M ∓ 1

2 = 0,±1,±2, . . . , for a Dirac field. In the JWKB
approximation, Eq. (14) may be expressed as E′ = γ(E − J · Ω); hence,
E′ = γ(E − v · p) − γS · Ω , where J = r × p + S and v = Ω × r. It is
important to note that ω′ vanishes for ω = MΩ , while ω′ can be negative
for ω < MΩ . The former circumstance poses a basic difficulty, while the
latter is a consequence of the absolute character of accelerated motion [12].
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It is useful to provide an intuitive explanation for the appearance of the
spin-rotation term in Eq. (12). In an incident positive (negative) helicity
wave, the electric and magnetic fields rotate with frequency ω in the posi-
tive (negative) sense about the direction of propagation of the wave. The
observer rotates about this direction with frequency Ω ; therefore, relative
to the observer, the electric and magnetic fields of the incident wave rotate
with frequency ω−Ω (ω +Ω) in the positive (negative) helicity case. While
the relative circular motion accounts for the subtraction (addition) of fre-
quencies, the Lorentz factor in Eq. (12) takes care of time dilation. This
factor is unity for the rotating observer at r = 0, hence ω′ = ω ∓ Ω in this
case; the fact that only the Lorentz factor distinguishes rotating observers
at different radii in Eq. (12) follows intuitively from the circumstance that
each such observer is locally equivalent to the one at r = 0, since each is
locally a center of rotation of frequency Ω .

The existence of spin-rotation coupling in Eq. (12) can be observationally
demonstrated by various means including the GPS, where it accounts for the
phenomenon of phase wrap-up. That is, for γ ≪ 1 and Ω ≪ ω, ω′ ≈ ω ∓Ω

has been verified with ω/(2π) ∼ 1 GHz and Ω/(2π) ∼ 8 Hz [13]. Further
observational aspects of Eq. (12) are discussed in [14].

The exact result ω′ = γ(ω − Ω) for incident positive-helicity radiation
has a fundamental consequence that must now be addressed. This relation
implies that ω′ = 0 for ω = Ω . The incident radiation stands completely
still with respect to all observers that uniformly rotate with frequency ω
about the direction of propagation of the wave. That by a mere rotation
an observer can stand still with an electromagnetic wave is analogous to
the pre-relativistic formula for the Doppler effect where an observer moving
with speed c along a beam of light would see an electromagnetic field that is
spatially oscillatory but at rest. This paradoxical circumstance played a role
in Einstein’s path to relativity theory (see p. 53 of [15], which contains
Einstein’s autobiographical notes). The origin of this defect in Eq. (12)
must be sought in Eq. (11), namely the assumption that the field measured
by the rotating observer is pointwise the same as that measured by the
momentarily comoving inertial observer (“hypothesis of locality”); a brief
critique of this notion of locality is contained in the next section. The other
nonlocal assumption, involving the Fourier analysis of the measured field, is
reasonable, since a number of periods of the wave must be received by the
accelerated observer before ω′ could be adequately measured.
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3. Hypothesis of locality

According to the standard theory of relativity, Lorentz invariance is ex-
tended to accelerated observers in Minkowski spacetime via the hypothesis
of locality, namely, the assumption that an accelerated observer, at each
instant along its worldline, is momentarily equivalent to an otherwise iden-
tical hypothetical comoving inertial observer. For time determination, this
assumption reduces to the clock hypothesis. Thus an accelerated observer is
pointwise inertial and this supposition provides operational significance for
Einstein’s principle of equivalence [16].

Regarding the source of this important postulate of relativity theory,
it must be noted that Lorentz introduced it as an approximation in his
discussion of the Lorentz–Fitzgerald contraction of electrons in curvilinear
motion (see section 183 of [17]). Einstein mentioned it in his discussion of
accelerated systems (see p. 60 of [18]). Weyl likened it to the assumption of
adiabaticity in thermodynamics (see pp. 176–177 of [19]).

The locality assumption originates from Newtonian mechanics, where the
state of a particle is determined by its position and velocity. The accelerated
observer shares the same state with the comoving inertial observer; hence,
locality is exact and no new physical assumption is needed if all physical
phenomena could be reduced to pointlike coincidences of classical particles
and null rays. However, when wave phenomena are taken into consideration,
the locality hypothesis would be approximately valid whenever λ ≪ L. Here
λ is the characteristic wavelength of the phenomena under observation and
L, the acceleration length, is the characteristic length scale for the variation
of the state of the observer. In practice, deviations from locality are expected
to be of order λ/L and are generally very small, since L is quite long; for
instance, c2/g⊕ ≈ 1 lyr and c/Ω⊕ ≈ 28 AU for an observer in a laboratory
fixed on the Earth. The consistency of these ideas can be illustrated by two
examples of general interest.

Imagine a classical charged particle of mass m and charge q that is sub-
ject to an external force F ext. The accelerated charge radiates electromag-
netic radiation with characteristic wavelength λ ∼ L. The hypothesis of
locality is thus violated since λ/L ∼ 1. This means that the state of the
charged particle cannot be given at each instant by its position and velocity
alone. This is consistent with the equation of motion of the particle, which
reduces to the Abraham–Lorentz equation

m
dv

dt
−

2

3

q2

c3

d2v

dt2
+ · · · = F ext (15)

in the nonrelativistic approximation.
Consider next muon decay in a storage ring [20]. This experiment has

verified with good accuracy relativistic time dilation τµ = γτ0
µ , where τ0

µ
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is the lifetime of the muon at rest. To mimic the circular acceleration of
a muon in a storage ring and take the quantum nature of this particle into
account, one can suppose that the muon decays from a high-energy Landau
level in a constant magnetic field. Based on the detailed calculation reported
in [21],

τµ ≈ γτ0
µ

[

1 +
2

3

(

λC

L

)2
]

, (16)

where λC is the Compton wavelength of the muon and L = c2/a, where
a ∼ 1018g⊕ is the effective acceleration of the muon. The correction to the
standard formula in Eq. (16) is very small (∼ 10−25), but nonzero.

4. Nonlocality

To go beyond the hypothesis of locality, let us return to Eq. (11) and
consider its generalization. Let F(α)(β)(τ) be the field that is actually mea-
sured by the accelerated observer. Here τ is measured by the background
inertial observers using dτ = cdt/γ. The most general linear relationship be-
tween F(α)(β)(τ) and the field measured by the infinite sequence of comoving
inertial observers, given by Eq. (11), that preserves causality is given by [22]

F(α)(β)(τ) = F(α)(β)(τ) +

τ
∫

τ0

K
(γ)(δ)

(α)(β) (τ, τ ′)F(γ)(δ)(τ
′)dτ ′ . (17)

Here τ0 is the instant at which the acceleration is turned on and the kernel
K is such that it vanishes in the absence of acceleration. The integral in
Eq. (17) has the form of an average over the past worldline of the accelerated
observer; moreover, it is expected to vanish in the JWKB limit (λ/L → 0). It
is a consequence of the Volterra–Tricomi theorem [23] that under reasonable
physical conditions the relationship between F(α)(β) and F(α)(β) is unique.

How should the kernel be determined? This involves various complica-
tions [22], but a key idea is that the kernel should be so chosen as to prevent
the circumstance encountered in Section 2. That is, we introduce the fun-
damental postulate that a basic radiation field can never stand completely
still with respect to an arbitrary observer. A detailed treatment of the non-
local theory of accelerated systems is contained in [24] and the references
cited therein. This theory is in agreement with available observational data;
moreover, it forbids the existence of a fundamental scalar (or pseudoscalar)
field.

What are the implications of nonlocality for the photon helicity-rotation
coupling in the thought experiment of Section 2? There are basically two
aspects of the problem that are altered by nonlocality:
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(i) As determined by the rotating observer, for ω > Ω the amplitude of
the positive-helicity incident wave is enhanced, while the amplitude of
the negative-helicity wave is diminished.

(ii) For ω = Ω , the field is not static in the positive helicity case; instead,
it varies like t as in the case of resonance.

It is important to verify these purely nonlocal effects experimentally. The
task here is complicated by the fact that the behavior of rotating measuring
devices must be known. An interesting discussion of such issues of principle
is contained in [25]. We therefore turn to a different approach based on the
correspondence principle in nonrelativistic quantum mechanics. The study
of electrons in rotational motion within the framework of quantum theory
could shed light on the question of the correct classical theory of accelerated
systems.

In connection with (i), the cross section σ for the photoionization of
hydrogen atom has been studied with the electron in a circular state with
respect to the incident radiation that would correspond to the motion of the
observer in Section 2. A detailed investigation reveals that σ+ > σ−, where
σ+(σ−) is the cross section in the case that the electron rotates in the same
(opposite) sense as the helicity of the incident radiation [26].

The situation in (ii) can be mimicked by the transition of an electron in
a circular “orbit” about a uniform magnetic field to the next energy state as
a result of absorption of a photon of frequency Ωc and definite helicity that
is incident along the direction of the magnetic field. Here Ωc is the electron
cyclotron frequency. Let P be the probability of transition to the next energy
state. A detailed investigation reveals that in the correspondence regime,
P+ ∝ t2, while P− = 0, corresponding to the positive and negative helicity
cases, respectively [26].

It appears from these studies that the nonlocal theory is in better agree-
ment with quantum theory than the standard theory of relativity that is
based on the hypothesis of locality [26].

5. Discussion

Mathisson’s spin-gravity Hamiltonian leads, via the gravitational Larmor
theorem, to the spin-rotation Hamiltonian. For the photon, helicity-rotation
coupling has the consequence that a rotating observer can in principle be
comoving with an electromagnetic wave such that the wave is oscillatory in
space but stands completely still with respect to the observer. The source of
this difficulty is the hypothesis of locality that is the basis for the extension
of Lorentz invariance to accelerated observers and the subsequent transition
to general relativity. The nonlocal theory of accelerated systems is briefly
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described; in this theory, instead of the locality assumption, where a curved
worldline is in effect replaced at each instant by the straight tangent world-
line, one considers in addition an average over the past worldline of the
observer. The consequences of this nonlocal special relativity are briefly de-
scribed. The nonlocal theory is in agreement with available observational
data. It remains to extend this theory to a nonlocal theory of gravitation.

I am grateful to Andrzej Trautman for his kind invitation to present this
work and warm hospitality at the Mathisson Conference, 17–20 October
2007, Warsaw, Poland.
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