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Equations of motion of a classical charged particle carrying a non-
vanishing internal angular momentum (spin) are derived from first prin-
ciples in the special relativistic context. The equations are implied by
the conservation law of both the energy-momentum four-vector and the
angular-momentum tensor carried by the total physical system, composed
of the particle and the field. Our method leads directly to the variational
and the hamiltonian formulations of the dynamics. It is based on the pro-
gramme formulated in Kijowski, Gen. Relativ. Gravitation J. 26, 167
(1994) and Acta Phys. Pol. A 85, 771 (1994) and may be treated as an
implementation of the idea of “deriving equations of motion from field equa-
tions”, formulated by Einstein.

PACS numbers: 02.30.Xx, 03.50.De, 04.20.Fy, 45.20.Jj

1. Introduction

When thinking about the problem of motion of a particle with spin,
people often accept the following, naive point of view: 1. External forces
(e.g. electromagnetic) act on the particle’s trajectory. 2. Once the trajectory
is “decided” by the above action, the spin propagates “as much parallelly
as possible” along the trajectory, i.e. undergoes the Fermi propagation.
Of course, the parallel propagation is excluded for any non-trivial trajectory
because the “spin vector” sλ, representing the internal angular momentum
of the particle, remains orthogonal with respect to the four-velocity uλ of
the particle: uλsλ ≡ 0.
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As will be seen in the sequel, such a naive “law of dynamics” contradicts
the angular momentum conservation. To restore this conservation, a non-
vanishing contribution pµ to the particle’s kinetic momentum Pµ, due to the
presence of the spin, must be taken into account. This contribution contains
the particle’s acceleration a, namely:

pµ = ελκνµu
λaκsν . (1)

Consequently, the conservation of the total kinetic momentum “Pµ +pµ” im-
plies an extra force acting on the trajectory of the particle and resulting from
the time derivative of pµ. Due to the structure of (1), this force contains
the third derivative

...
x of the particle position, contained in the quantity ȧ.

The equations of motion contain, therefore, a “three dots” term. Contrary
to the better known “three dots force”, proposed by Dirac (see [2]), the force
due to the spin is orthogonal to the four-velocity of the particle and does
not produce any self-acceleration (cf. the so called “runaway solutions” of
the Dirac equation). We call this force the Mathisson1 force (see [3]). The
goal of this paper is to derive this force in the purely special-relativistic con-
text and to show that the resulting dynamics is conservative. Our procedure
uses a natural variational principle. As a final result we obtain the canonical
(symplectic) structure of the phase space of the “particle with spin” system
and we calculate the Hamiltonian function generating its dynamics. In fact,
we first test the applicability of our method on the case of a particle without
spin and derive the Lorentz force acting on it. This way we show that the
Lorentz force cannot be treated as an independent law of physics, but is
a necessary consequence of Maxwell equations, describing the electromag-
netic field interacting with “particle-like” sources (cf. [5]). Finally, we show
how to generalise this method to the case of a particle with spin.

There is an apparent paradox when we want to formulate a “three-dots-
equation” in a Hamiltonian way. The independent variables of such a theory
seems to be: three positions, three velocities and three accelerations (sec-
ond order derivatives of the position), together with the two configurations
of the spin vector ~s ∈ R; ‖~s‖ = s, (a three-vector with a fixed length s).
Hence, we have 3 + 3 + 3 + 2 = 11 parameters — an uneven number which
apparently contradict the possibility of a Hamiltonian description, where the
dimensionality of the total phase space (number of configurations + num-
ber of corresponding momenta) is always even. The answer to this paradox
consists in the observation that the Mathisson force is always orthogonal
to the spin. Therefore, the motion in the direction of the spin remains

1 A similar force was earlier discussed by Frenkel (cf. [4]) in the context of the idea
of a “rotating electron”. According to this idea, the classical rotation of an extended
portion of electric charge produces a non-vanishing magnetic moment. In Frenkel’s
approach, however, equations of motion are not derived but postulated a priori.
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governed by the “double-dot” law, rather then the “three-dots”. When for-
mulated in a variational way, the dynamics exhibits a one-parameter group
of gauge transformations due to the fact that the “three-dots” enter into
the Lagrangian function of the system only via the vector product ~̇a × ~s.
Consequently, the Legendre transformation leads to a degenerate canonical
structure on the above 11-dimensional space: one of these parameters is
a pure gauge. The physical phase space of the system is 10-dimensional and
can be obtained as a quotient space with respect to this degeneracy.

A similar, but much simpler, construction for a particle without spin
was proposed in [6]. It can be noticed that the idea of the construction
which we propose in the present paper was already contained there, but the
technical problems related to the explicit description of this quotient space
proved to be too difficult at that time. Only few month ago I was able to
quotient the non-physical, 11-dimensional phase space with respect to the
gauge transformations and to calculate explicitly both the physical phase
space and the Hamiltonian function of the system. This way we have at our
disposal a powerful method of Hamiltonian analysis which, hopefully, will
allow us to verify and, maybe, to strengthen the results and the hypothesis
proposed by Mathisson (cf. [3]).

2. Relativistic field theory in an arbitrary non-inertial

reference frame

The present section contains a simple exercise in relativistic field theory.
The techniques which we develop here enable us to construct a system of
coordinates which proves to be extremely useful for our purposes. As will
be seen in the sequel, using this tool we are able to solve explicitly all the
constraints of the theory and to describe the remaining “true degrees of
freedom” in a relatively simple way.

Consider a Lagrangian field theory in the Minkowski spacetime M
(e.g. electrodynamics interacting with some matter fields). The dynam-
ics of the theory is encoded within a special-relativistic Lagrangian density
L = L(ψ, ∂ψ), where by ψ we denote symbolically all the fields appearing
in the theory.

Let yk = qk(t) with k = 1, 2, 3; t = y0, be the coordinate description
of a given time-like world line ζ with respect to a laboratory frame, i.e. to
a system (yµ), µ = 0, 1, 2, 3; of Lorentzian space-time coordinates. The line
ζ represents a trajectory of a non-inertial observer.

We will construct an accelerated reference frame, co-moving with the
observer ζ. For this purpose let us consider at each point (t, qk(t)) ∈ ζ
the 3-dimensional hyperplane Σt orthogonal to ζ, i.e. orthogonal to the
four-velocity vector U(t) = (uµ(t)):
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(uµ) = (u0, uk) :=
1√

1 − v
2

(1, vk) , (2)

where vk := q̇k, v0 = 1, (vµ) = (1,v) and v
2 = ‖v‖2 is the Euclidean length

of a three vector (vk) = v. We call Σt the “rest frame surface”. Choose on Σt

any system (xi) of cartesian coordinates, centered at the particle’s position
(i.e. the particle is located at the point xi = 0).

We consider space-time as a disjoint sum of rest frame surfaces Σt, each
of them corresponding to a specific value of the coordinate x0 and parame-
terised by the coordinates (xi). For points belonging to Σt we put x0 := t.
This way we obtain a new system (xα) = (x0, xk) of “co-moving” coordinates
in a neighbourhood of ζ. Our construction implies that both coordinates x0

and y0 coincide on the trajectory ζ. In general, (xα) is not a global system
because different Σ’s may intersect. Nevertheless, we will use it globally to
describe the evolution of the field ψ from one Σt to another. For a hyperbolic
field theory, initial data on one Σt implies the entire field evolution. We are
allowed, therefore, to describe this evolution as a one-parameter family of
field initial data over subsequent Σ’s.

Formally, we will proceed as follows. We consider an abstract space-time
M := T ×Σ defined as the product of an abstract time axis T = R

1 with an
abstract, three dimensional Euclidean space Σ = R

3. Given a world-line ζ,
we will need an identification of points of M with points of the physical
space-time M . Such an identification is not unique because on each Σt we
are still free to choose an arbitrary O(3)-rotation.

Suppose, therefore, that an identification F has been chosen, which is
local with respect to the observer’s trajectory. By locality we mean that,
given the position and the velocity of the observer at time t, the isometry

F(qk(t),vk(t)) : Σ 7→ Σt (3)

is uniquely defined, which maps 0 ∈ Σ into the particle position (t, qk(t))
∈ Σt.

As an example of such an isometry which is local with respect to the
trajectory we can take the following one. Choose the unique boost transfor-
mation B relating the laboratory time axis ∂/∂y0 with the observer’s proper
time axis U . Next, define the observer’s space axis ∂/∂xk on Σt by acting
with B on the corresponding laboratory space axis ∂/∂yk. It is easy to check
(cf. [6]), that the resulting formula for F(qk(t),vk(t)) reads:

y0(t, xl) := t+
1√

1 − v
2(t)

xlvl(t) , (4)

yk(t, xl) := qk(t) +
(
δk
l + ϕ(v2)vkvl

)
xl . (5)
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Here, the following function of a real variable has been used:

ϕ(τ) :=
1

τ

(
1√

1 − τ
− 1

)
=

1√
1 − τ(1 +

√
1 − τ)

. (6)

The function is regular (even analytic) for τ = v
2 < 1. The operator

(δk
l + ϕ(v2)vkvl) acting on rest-frame variables xl comes from the boost

transformation.
Suppose, therefore, that for a given trajectory ζ a local isometry (3)

has been chosen, which defines Fζ : M 7→ M . This mapping is usually
not invertible: different points of M may correspond to the same point of
space-time M because different Σt’s may intersect. It enables us, however, to
define the metric tensor on M as the pull-back F ∗

ζ g of the Minkowski metric.
The components gαβ of the above metric are defined by the derivatives of
Fζ , i.e. they depend upon the first and the second derivatives of the position

qk(t) of our observer.
Because (xk) are cartesian coordinates on Σ, the space–space compo-

nents of g are trivial: gij = δij . The only non-trivial components of g are,
therefore, the lapse function and the (purely rotational) shift vector:

N =
1√
−g00

=
√

1 − v
2 (1 + aix

i) , (7)

Nm = g0m =
√

1 − v
2 ǫmklω

kxl , (8)

where ai is the observer’s acceleration vector in the co-moving frame. The
rotation ωm depends upon the coordination of isometries (3) between dif-
ferent Σt’s. Because ωm depends locally upon the trajectory, it may also be
calculated in terms of the velocity and the acceleration of the observer, once
the identification (3) has been chosen. In the case of example (4)–(5), it is
easy to check that

ai =
1

1 − v
2

(
δi
k + ϕ(v2)vivk

)
v̇k , (9)

ωm =
1√

1 − v
2
ϕ(v2)vkv̇lǫklm , (10)

where v̇k is the observer’s acceleration in the laboratory frame.
The metric F ∗

ζ g is degenerate at singular points of the identification
map, where the identification is locally non-invertible because adjacent Σ’s
intersect (i.e. where N = 0), but this degeneration does not produce any
difficulty in what follows.

The simplest O(3)-coordination of the isometries (3) would be: ωm ≡ 0.
It implies the Fermi-propagating of the coordinates xk along ζ. Such a co-
ordination is, however, non-local with respect to the trajectory. Indeed, the



148 J. Kijowski

identification Ft between Σ and Σt would be, in this case, a result of the
Fermi propagation of a given mapping Ft0 from the initial time t0 to the
actual time t. Such a mapping cannot be described by a local formula (3).
We stress, however, that for our construction we do not need to specify any
coordination F , provided it is local.

Using the metric (7)–(8) on M, we may rewrite the invariant Lagrangian
density L of the field theory under consideration, just as in any other curvi-
linear system of coordinates. The Lagrangian obtained this way depends
upon the field ψ, its first derivatives, but also on the observer’s position,
velocity and acceleration, which enter via the metric components. Variation
with respect to ψ produces field equations in the co-moving coordinate sys-
tem (xα). Due to the relativistic invariance of the theory, its action, equal
to the integral of the above quantity, does not change for any variation (with
fixed boundary!) of the observer’s trajectory. This implies that the variation
of L with respect to the observer’s position qk is trivial and does not produce
new field equations.

For our purposes we will keep, however, at the same footing the field
degrees of freedom ψ and (at the moment, physically irrelevant) observer’s
degrees of freedom qk:

L = L(ψ, ∂ψ; q, q̇, q̈) .

For such a Lagrangian theory, we perform the Legendre transformation in
the field variables, and pass to the Hamiltonian description of the dynamics,
keeping description of the “mechanical” degrees of freedom on the Lagrangian
level. For this purpose we define

LH := L− πψ̇ , (11)

where ψ̇ denotes derivative with respect to x0 and π is the momentum canon-
ically conjugate to ψ:

π :=
∂L

∂ψ̇
. (12)

The quantity LH = LH(ψ, π; q, q̇, q̈) plays role of a Hamiltonian function
(with negative sign) with respect to the field configurations and momenta
(ψ, π), whereas it remains the Lagrangian density for the observer’s posi-
tion qk. It is an analog of the Routhian function in analytical mechanics.
It generates the hamiltonian field evolution with respect to the accelerated
frame, if the “mechanical degrees of freedom” qk are fixed. Due to (7)–(8),
this evolution is a superposition of the following three transformations:
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• time-translation in the direction of the local time-axis of the observer,

• boost in the direction of the acceleration ak of the observer,

• purely spatial O(3)-rotation ωm.

It is, therefore, obvious that the numerical value of the generator LH of such
an evolution is equal to

LH = −
√

1 − v
2
(
H + akRk − ωmSm

)
, (13)

where H is the rest-frame field energy (generator of the time translations),
Rk is the rest-frame static moment (generator of the boosts) and Sm is
the rest-frame angular momentum (generator of the rotations), all of them
calculated at the point (t, qk(t)). The two vectors Rk and Sk represent the
angular momentum tensor Mαβ according to formulae: Mk0 = Rk and
Mij = ǫijkSk. The factor

√
1 − v

2 in front of the generator is necessary,
because the time t = x0 = y0, which we use to parameterise the observer’s
trajectory, is not the proper time along ζ but the laboratory time.

Now, we want to convince the reader that, similarly as was true in case
of L, Euler–Lagrange equations obtained when varying LH with respect to
the observer’s position q(t) are satisfied identically if the field equations are
satisfied. The proof follows directly from the conservation laws of the total
four-momentum Pα and the total angular momentum Mαβ of the field,
implied by Noether’s theorem. Indeed, the four-momentum conservation
reads:

∇0Pα = Ṗα + Γα
0βPβ = 0 , (14)

where Γα
βγ are the Christoffel symbols of the metric gαβ , calculated on the

trajectory, i.e. at xk = 0. Putting P0 = H and calculating Γ ’s from (8), one
immediately obtains the following “accelerated-frame version” of Noether
conservation laws:

Ḣ = −
√

1 − v
2 akPk , (15)

Ṗk =
√

1 − v
2
(
−akH− ǫ ml

k ωmPl

)
. (16)

The angular momentum conservation reads ∇0M̃αβ = 0, where:

M̃αβ := Mαβ − yαPβ + yβPα ,

because the quantity Mαβ describes the angular momentum with respect
to the moving point (t, qk(t)); to obtain a conserved quantity we must re-
calculate it with respect to any fixed point, i.e. (0, 0), and the result of this
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recalculation is the above tensor M̃. This way we obtain the following form
of the conservation laws:

Ṙk =
√

1 − v
2
(
Pk − ǫkima

iSm − ǫkilω
iRl

)
, (17)

Ṡm =
√

1 − v
2
(
ǫmilaiRl − ǫmijωiSj

)
. (18)

These conservation laws are implied by field equations. It has been proved
in [6], that the Euler–Lagrange equations obtained by varying (13) with
respect to the observer’s position q(t) are equivalent to equations (15)–(18).

The fact, that the Euler–Lagrange equations of the theory are not inde-
pendent, is typical for a gauge theory. This property may be nicely described
in the Hamiltonian picture. Considering LH as the generator of the evolution
of both the field degrees of freedom and the observer’s degrees of freedom,
we may perform the Legendre transformation also with respect to the latter,
and find this way the complete Hamiltonian of the entire (observer + field)
system (see again [6] for details). It may be proved, that q plays the role
of a gauge parameter: momenta canonically conjugate to observer’s posi-
tion are not independent but subject to constraints. Reducing the theory
with respect to these constraints we would end up with the “true” degrees
of freedom, namely those describing the field. Fixing the observer’s trajec-
tory would play role of “gauge fixing” and the “evolution equations” of the
observer would be automatically satisfied if the field equations were satisfied.

3. Particle as a field “soliton”

We assume that our field theory describes matter field (fields?), φ inter-
acting with the electromagnetic field fµν . Symbolically, we write: ψ = (φ, f).
Moreover, we assume that for weak electromagnetic field and vanishing mat-
ter fields the theory coincides with Maxwell electrodynamics. Finally, we
suppose that the theory admits a static, stable (“soliton-like”) solution, for
which matter fields are concentrated within a tiny region nearby to a point
(the “strong-field-region”), whereas outside of it (in the “weak-field-region”)
the matter fields practically vanish and the electromagnetic field is suffi-
ciently weak to be described by the Maxwell equations. By stability of the
solution we mean that its field configuration corresponds to a local min-
imum of the total energy, treated as a functional on the phase space of
Cauchy data of the theory. This implies that the amount of energy carried
by small perturbations of this solutions does not differ considerably from
the total energy (mass) of the unperturbed soliton, which we denote by m.
We interpret this solution as the charged particle at rest, surrounded by its
own Coulomb field. We call the parameter m the rest mass of the particle.
Observe, that m is not a local quantity! It contains not only the energy
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of the “material core” of the particle, but also electromagnetic contribution

carried by its Coulomb tail
(
~D = e~x

‖x‖3 ; ~B = 0
)

and, finally, the interaction

energy. Hence, m is “already renormalised” and there is no sense to split it
into the sum “m = m0 +mC”, where m0 would be the “bare mass” which,
finally, “gets dressed by a cloud of fotons” and mC would be the mass of this
cloud. Contrary to the mass, the total electric charge e of the particle is
a local quantity, contained completely in the strong field region. Moreover,
the soliton may carry some amount of the angular momentum sk. It is also
a local quantity, because in the weak field region the field reduces to the
Coulomb tail, which does not carry any angular momentum. We call sk the
spin of the particle. Of course, the total momentum pk carried by the static
solution vanishes.

Acting with the Poincaré group on the soliton solution we obtain, due
to relativistic invariance of the theory, a 6-parameter family of boosted and
spatially shifted solitons, describing particles moving with constant velocity,
i.e. free particles.

We are interested, however, in the problem of motion of particles mov-
ing with an arbitrary velocity — not necessary constant. As a model of
such a particle we take any solution of our field theory which fulfils the
following conditions: 1. there is a time-like trajectory ζ and a tiny world
tube T around it, containing the entire “strong field region” of the solution;
2. on each rest frame surface Σt, field configuration within T does not differ
considerably from the field configuration of the “free particle” i.e. from the
(boosted) soliton solution. The above conditions mean that the complement
∁T = M \ T of T is the weak field region. Hence, outside of T the field
dynamics reduces to Maxwell equations.

We are going to show in the sequel that not every trajectory ζ admits
such a solution. Its existence (i.e. a possibility, that the particle can move
along ζ) implies a certain condition on the trajectory. We are going to derive
these “equations of motion” from field equations. This means that we use
in our derivation Maxwell equations as the unique quantitative assumption
(plus several qualitative assumptions, some of them being already formulated
above).

Consider, therefore, such a “moving particle solution”. As shown in Sec. 2,
it fulfils the variational principle defined by the “Lagrango-Hamiltonian” LH

given by formula (13). Being free to choose the observer’s trajectory, we
simply choose it equal to the particle’s trajectory ζ. We shall calculate now
the value of LH. On each rest frame surface Σt the Cauchy data (φ, π) for
the matter field vanish outside of the strong field region T ∩ Σt and does
not differ considerably from the data (φ0, π0) corresponding to the soliton
solution. On the other hand, the electromagnetic field on Σt may be decom-
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posed into the sum: f = f0 + f̃ , where f0 is the field corresponding to the
soliton solution and f̃ := f − f0 is simply the remainder. The quantities H,
P, R and S are obtained via integration of appropriate components of the
total energy-momentum tensor of the theory. Therefore, they may be de-
composed as a sum: integration over the strong field region T ∩Σt gives the
contributions which we call HT , PT , RT and ST and the integration over its
complement gives, respectively, the contributions which we call H∁T , H∁T ,
R∁T and S∁T . But, in the weak field region the only significant component
of the theory is the electromagnetic field f and the total energy-momentum
tensor reduces to the Maxwell tensor which is bilinear with respect to the
field f . Hence, we have a further decomposition:

H∁T = h∁T +H + H ,

where the first term is quadratic in f0, the second is bilinear and the last one
is quadratic in f̃ , and similarly for the quantities P, R and S. Summing up
the terms quadratic in f0 with the contributions from the strong field region
(e.g. h = HT + h∁T for the energy), we obtain the following decomposition:

H = h+H + H ,
Pk = pk + Pk + Pk ,
Rk = rk +Rk + Rk ,
Sk = sk + Sk + Sk .

(19)

These quantities contain the entire complicated, internal structure of the
extended moving particle. We want to construct a simplified theory which
— disregarding most of this structure — is able to capture in a cumulative
way the dynamics of the particle.

For this purpose we are going to approximate the above exact quantities
by something which is much simpler. Because the contributions from the
strong field region do not differ considerably from the corresponding integrals
for the soliton, the first column may be well approximated by the values
describing the particle at rest: h = m, pk = 0 and rk = 0 (the last equation
because we choose the center of mass of the soliton as the origin of our
coordinate system)2.

Also the remaining two columns may be calculated approximatively with-
out any knowledge about the entire internal structure of the particle. Indeed,

2 Actually, the origin of the system could be put either at the center of mass or at
the center of charge. Here, we use a simplifying assumption that both the centers
coincide. Admitting a non vanishing distance between them could be a good remedy
against the non-stability of the model, see [7]. On the other hand, a careful analysis
of the renormalisation procedure used here shows that the distance between the two
centers must be treated as a dynamical quantity, see [8].
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we have approximately f = f0 inside the strong field region. But, outside
of T ∩ Σt, we know that f0 is the Coulomb field. Let us replace it by the
Coulomb field fC on the entire Σt. Consider the Maxwell field fM := fC+ f̃ ,
with delta-like source concentrated on ζ. Its Maxwell energy-momentum ten-
sor has a non-integrable singularity on ζ and the straightforward integration
cannot be used to define its energy-momentum and the angular momentum.
However, it can be used to calculate an approximative value of the second
and the third column of (19), if we integrate only terms bilinear in fC and

f̃ (for the second column) and quadratic in f̃ (for the third column). More-
over, it is easy to show that H and Sk calculated this way vanish identically
(cf. [1]).

This way we are lead to the theory of Maxwell field fM with δ-like sources,
i.e. theory of point particles, treated as an approximation of the exact the-
ory of extended particles. The “energy-momentum and angular-momentum
content” of the total “field + particles” system is described by the following
free of singularities (“already renormalised”) quantities:

H = m+ 0 + H ,
Pk = 0 + Pk + Pk ,
Rk = 0 +Rk + Rk ,
Sk = sk + 0 + Sk .

(20)

In the first column we have the “pure particle” quantities, characterising the
free particle3, i.e. the soliton solution of the exact solution of the non-linear
theory (φ, f). And this is the only, phenomenological input of the non-linear
theory. To calculate the second and the last column we split (on each Σt

separately) the linear Maxwell field fM into the Coulomb tail of the particle:

fC =
(
~D = e~x

‖x‖3 ; ~B = 0
)
, and the remaining field f̃ = fM − fC. Next, we

calculate Maxwell energy-momentum tensor and skip all the terms which
are quadratic in the Coulomb tail fC, because the particle’s own field has
already been taken into account in the first column. The last column is
defined by integrals of terms quadratic with respect to f̃ . It describes the
“field quantities”. The second column is defined by integrals of mixed terms
and is responsible for interaction between particle and field. The arguments
presented above show that (20) provides a good approximation of the ex-
act quantities (19). Conservation laws (15)–(18) for the total quantities are
equivalent to the variational principle for the trajectory, with the Lagrangian

3 As discussed in the previous footnote, a non-vanishing, dynamical static moment
r

k = r
k(~a), describing the distance between center of charge and center of mass

could also be taken into account. It turns out that the consistency of the theory
implies a certain dependence of the rest mass upon the acceleration. These terms —
negligible for small accelerations — may stabilise considerably the dynamics of the
system (cf. [7]). These issues will be discussed elsewhere.
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given by formula (13). Together with Maxwell equations for fM, with the
delta-like current jµ := 4πeuµδζ , they define a consistent theory of interact-
ing particles and fields, which was proposed in [1]. It was proved in [9] that
the initial value problem is well posed in this theory.

4. Test particle model

In the present paper I will restrict myself to a further approximation
of the above complete theory. This approximation may be called a “test
particle” theory. It is obtained by assuming that the “external field” f̃ is
a free Maxwell field given a priori. This means that we neglect the radiation
field and, besides of the external field, we take into account only the particle’s
own Coulomb field. Of course, such a truncation of the field is a flagrant
violation of the Maxwell equations. Such a violation is, nevertheless, much
less severe than the procedures based on the truncation of the particle’s
Coulomb tail, which is usually done in the test particle theory. In our
approach, the use of the variational principle based on the Lagrangian (13)
implies equations of motion which guarantee that this violation will be “as
slight as possible”. Of course, the applicability of such an approximation
is restricted to the situation when the acceleration of the particle remains
sufficiently small during the evolution. To describe also the radiation due to
the motion of the particle, the previous version of the theory must by taken
into account (see also discussion in [10]).

In the test particle model, the last column of (20) represents the energy-
momentum and the angular-momentum of the free Maxwell field, namely
the external field f̃ . These quantities are already conserved, due to Maxwell
equations. Therefore, as noticed in Sec. 2, the contribution to Euler–
Lagrange equations due to these terms is trivial. Hence, we may skip
them when calculating the Lagrangian (13). We end up with the following

Lagrangian describing the dynamics of test particles in a given field f̃ :

LH = −
√

1 − v
2
(
m+ akRk − ωmsm

)
. (21)

The case without spin (i.e. when s = 0) was already analysed in paper [5].
The following identity was proved:

LH = −
√

1 − v
2
(
m+ akRk

)

= −m
√

1 − v
2 + evµAµ + boundary terms , (22)

where Aµ denote potentials for the external field f̃ . Of course, the left hand
side does not depend upon the choice of potentials (it is gauge invariant!)
and so must be the right hand side. This means that the boundary terms
must compensate the gauge dependence of the interaction term evµAµ.
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The boundary terms may be skipped. This way we have proved the
equivalence of the gauge invariant but second order (because containing ac-
celeration) variational principle LH and the standard, gauge dependent but

first order variational principle:

Lgauge = −m
√

1 − v
2 + evµAµ , (23)

producing the Lorentz equations of motion for test particles. Hence, we have
derived equations of motion from field equations for particles without spin!
This result convinces us that an analogous procedure may be applied in the
non-vanishing spin case.

Observe that the relation between the two equivalent Lagrangians is
similar to the relation between the gauge invariant but second order Hilbert
Lagrangian and the gauge dependent but first order Einstein Lagrangian in
general relativity theory. They differ by boundary terms only.

5. Heuristic derivation of the Mathisson force

Before we discuss the Hamiltonian structure of the dynamics implied
by the complete Lagrangian (21) for a particle with spin, we want to give
a heuristic explanation of the origin of the Mathisson force. Our discussion
is valid not only for the test particle model but also for a complete theory
of interacting particles and fields.

Consider first a theory without spin. It was proved in [1] that equations
of motion are equivalent to the energy-momentum conservation laws (15)–
(16), whereas the angular momentum conservation (17)–(18) is obtained
freely from them, provided Maxwell equations are fulfilled by the external
field f̃ . Now, we want to introduce also a non-vanishing spin s. This means
that we must replace the quantity S in (18) by the sum S+s. The equation
will remain satisfied if the terms which we add on its both sides are equal.
Hence, the spin must propagate according to the following law:

ṡm = −
√

1 − v
2ǫmijωisj (24)

which is nothing but the Thomas precession. This means that we have Fermi
propagation of the spin vector s along the particle’s trajectory. The same
substitution S → S+s in equation (17) leads to the violation of the angular
momentum conservation, unless the new term is compensated by an extra
contribution

pk := ǫkima
ism (25)

to the total momentum, due to the spin. Admitting such a contribution,
the angular momentum conservation law remains fulfilled. The substitution
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P → P + p does not lead to the violation of the energy conservation (15)
because p is orthogonal to the acceleration a. However, the same substitution
in the momentum conservation (16) produces the three-dots force coming
from the time derivative of a in (25).

6. Phase space for a particle with spin

Consider, therefore, the Lagrangian for a test particle with spin:

L = L(q, q̇, q̈|sm) = −m
√

1 − v
2 + evµAµ(q) + ϕ(v2)vk v̇lǫklms

m , (26)

equivalent (up to boundary terms) to the gauge invariant quantity (21).
Variation of the last term with respect to the particle’s position produces
the Mathisson force. As discussed in Sec. 2, L is a Routhian function:
Lagrangian with respect to the particle variables (q, q̇, q̈) and Hamiltonian
with respect to the field. Here, the spin is carried by the field. We conclude
that the canonical structure of the spin variables sm must be obtained from
the canonical structure of the Cauchy data for the field. Consider, therefore,
the infinite dimensional phase space of these data. Take a single point in
it, corresponding to our soliton (particle at rest) centered at zero. Acting
with the rotation group SO(3), we generate a three dimensional subspace
Π of our infinite dimensional phase space. This is the phase space for the
spin. Its points may be labelled by the value of the configuration of the
spin vector (sm) = ~s on a two dimensional sphere and, possibly, by an
internal angle α. (The latter variable is irrelevant a priori if the soliton
exhibits an axial symmetry, but we do not need such an assumption for our
purposes.) The symplectic form of Π comes from the restriction to Π of the
canonical symplectic form on the space of the field Cauchy data. It must
be degenerate because Π is odd-dimensional. We know, moreover, that the
three components of the spin vector form the Lie algebra o(3) and, therefore,
satisfy the standard Poisson brackets:

{sm, sn} = ǫmnksk .

These two facts imply uniquely the canonical structure of Π: its symplectic
form is degenerate in the direction of the phase α and is proportional to the
surface form on the sphere describing the spin configuration ~s = (sk):

Ωspin =

∫

Σ

dπ ∧ dψ
∣∣∣
Π

= − 1

2s2
siǫijk ds

j ∧ dsk = s d(cos θ) ∧ dϕ , (27)

where (θ, ϕ) are angular coordinates on the sphere {‖~s‖ = s} (from now on,
we switch to the “arrow notation” of three vectors). Due to this formula, the
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Hamiltonian equations of motion for the spin imply its rotation around the
following angular velocity vector:

ω̃m = ϕ(v2)vkv̇lǫklm

because the last term of (26) is equal to ω̃ms
m = ωs cos θ. Hence, we have

ϕ̇ = ω. This is precisely the Thomas precession. The phase α is a pure
gauge parameter and must be skipped from our considerations.

7. Hamiltonian function for a particle with spin

To pass to the Hamiltonian formulation of the dynamics we perform the
Legendre transformation in the orbital variables (qk), leaving the canon-
ical description of the spin variables unchanged. Such a transformation
is not completely standard because L is of the second differential order.
(A simple description of the canonical structure for theories with higher
order Lagrangians may be found in [11].) The transformation consists in
considering velocities vk as additional variables, related with position qk by
the constraint equation q̇k − vk = 0. Finally, the Hamiltonian function is
obtained from the Lagrangian by the standard formula:

H = H(q, v, P,Q, s) = Pk q̇
k +Qkv̇

k − L , (28)

where Pk and Qk are momenta canonically conjugate to qk and vk, respec-
tively. In particular, we have:

Qk :=
∂L

∂v̇k
= ϕ(v2)slvm ǫklm . (29)

The symplectic structure of the theory is given by:

Ω = dPk ∧ dqk + dQk ∧ dvk +Ωspin . (30)

We have here 4×3+2 = 14 parameters. However, we must take into account
3 constraint equations (29), which reduce the number of parameters to 11.
The phase space splits, therefore, into the standard, 6 dimensional “orbital”
phase space, parameterised by positions and momenta and equipped with
the canonical form

Ωorbital = dPk ∧ d qk , (31)

and the remaining 5 dimensional “internal” space R
3 ×S2, parameterised by

variables (~v,~s); ‖~s‖ = s, and equipped with the form:

Ωinternal = dQk ∧ dvk +Ωspin , (32)
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where Qk are not independent variables, but are given by (29). We have,
therefore:

Ωinternal = d
(
ϕ(v2)slvmǫklm

)
∧ dvk − 1

2s2
siǫijk ds

j ∧ dsk . (33)

Of course, Ωinternal is degenerate (because the dimension of this space is
odd). The physical phase space of the “true degrees of freedom” is obtained
as the quotient space of R

3 × S2 with respect to this degeneracy. For this
purpose we calculate the kernel of (33), i.e. a non-vanishing vector field X
fulfilling equation: iXΩinternal = 0. It may be checked by inspection that
the following field X (or any other of the form fX, where f 6= 0) satisfies
this condition:

X =

[
vk − sk~v · ~s

s2

]
∂

∂sk

+

√
1 − v

2

s2

[(
1 +

√
1 − v

2
)
si − (~v · ~s) vi

] ∂

∂vi
. (34)

Next step of this reduction consists in calculating integral curves of this field.
Finally, we identify points which belong to the same integral curve.

Recently, I was able to perform this programme and to give an explicit
description of the quotient space. It is based on the observation that in every
equivalence class [(~v,~s)] of the element (~v,~s), there is a unique representative
(~w, s · ~σ), ‖~σ‖ = 1; such that ~w is orthogonal to ~σ, i.e. fulfilling equation
~w · ~σ = 0. We may, therefore, describe the quotient by the four dimensional
space of pairs of mutually orthogonal vectors (~w,~σ), and such that ~σ is
normalised. The symplectic form (33), when restricted to this space, reduces
to:

1
s
Ωinternal = d

(
ϕ(w2)σlwmǫklm

)
∧ dwk − 1

2
σiǫijkdσ

j ∧ dσk . (35)

I am also able to diagonalise this form, i.e. to write it in terms of two pairs
of mutually conjugate variables (this result will be presented elsewhere).
Finally, using the above variables, the value of the Hamiltonian function
may be calculated:

H = ~π · ~w +
√

1 − w2 ·
√
m2 + (~π · ~σ)2 + U(q) , (36)

where U(q) = −eA0(q) is the scalar potential and ~π = (πk) is the “kinetic
momentum”, defined in terms of the “canonical momentum” Pk (cf. formula
(31)) by the following, standard formula:

πk := Pk − eAk(q) .
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It is interesting to notice, that one of the equations generated by this Hamil-
tonian reads:

~v = ~̇q =
∂H

∂ ~P
=
∂H

∂~π
= ~w + ~σ · const.

It gives a nice consistency test for the correctness of the above reduction
procedure. Indeed, it is easy to check that this vector belongs to the same
class as w.

8. Concluding remarks

We stress that no naive idea of a “rotating electron” was necessary for
our purposes. In our approach, the angular momentum carried by the static,
soliton solution of field equation (“spin”) does not need to be imagined as
a mechanical quantity, generated by a “rotation”, but rather as having a field-
theoretical nature. In particular, its value is fixed by the specific, non-
linear properties of the field theory — the building material of the particle.
Contrary to the mechanical “spin”, where we can always add an infinitesimal
amount of rotation, the quantity s is quantised: any deformation of the
soliton solution destroys its static character. It is not difficult to prove that
already relatively simple (but highly non-linear) models, like e.g. charged
scalar field interacting with electromagnetic field, admit such solutions. For
this purpose one can easily observe, that for a given shape of a solution it is
possible to find such a Hamiltonian function, for which the shape in question
is a local minimum of the total energy. Of course, not every Hamiltonian
function leads to a relativistic theory, when the Legengre transformation
back to the variational formulation is performed. But a careful analysis of
these issues shows, that there is still enough room to fulfil also the relativity
requirement.

Our approach, however, permits to disregard this (possibly very com-
plicated) internal structure and to treat the three numbers characterising
the particle: m, e and s, as phenomenological quantities. The equations of
motion obtained this way are universal.

The autonomous Hamiltonian system described by (31) and (35)–(36)
was derived in the “test particle limit”. To obtain the consistent theory of
interacting particles and fields one cannot treat the “external field” f̃ as a free
Maxwell field given a priori but, rather, as additional degrees of freedom of
the total system, cf. [1] and [6].
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