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In the gauge gravitational models, the geometry of a spacetime man-
ifold becomes non-Riemannian. The curvature, torsion and nonmetricity
are all nontrivial in these models, in general. The study of the dynamics
of the physical matter (particles, bodies, continuous media, etc.) in such
manifolds is crucial for determining the actual geometrical structure of the
spacetime. Here we briefly describe a model of a test particle with hyper-
momentum which can be used as a tool for detecting the non-Riemannian
geometry, and recall that the conservation laws in the gauge gravity theories
underlie the general analysis of the equations of motion in such models.

PACS numbers: 11.15.Kc, 04.20.Jb, 03.50.Kk

1. Introduction

Dynamics of particles (and more generally, of bodies and continuous
media) is determined by their physical properties and by the coupling to
the external fields. The specific feature of the gravitational theories, that
distinguishes them from the other field-theoretic models, is that the equa-
tions of motion should not be postulated separately but are derived from
the field equations and from the conservation laws. This is well known for
Einstein’s general relativity which is based on the Riemannian geometry,
and the same is true for the gauge gravity models which are formulated on
the non-Riemannian spacetimes.

The importance of the study of the equations of motion is explained by
their role as the tools for exploring the spacetime geometry. Einstein [1]
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stressed the experimental nature of the spacetime structure: “. . . The ques-
tion whether this continuum has a Euclidean, Riemannian, or any other
structure is a question of physics proper which must be answered by expe-
rience, and not a question of a convention to be chosen on grounds of mere
expediency.”

In the gauge approach to gravity (for the introduction and the overview
see [2,3], for example) the gravitational field arises as a field of a Yang–Mills
type. Analogously to the usual Yang–Mills theory which is based on the
local symmetry group that acts in the internal space, the gauge gravity is
also based on a local symmetry group which, however, acts directly on the
spacetime manifold. Accordingly, whereas the standard Yang–Mills theory
is naturally interpreted in terms of the nontrivial geometry of fiber bundles
over a flat manifold, the gauge gravity approach gives rise to the nontrivial
geometrical structures on the spacetime itself.

The convenient general framework for the discussion of the gauge gravity
models is provided by the metric-affine gravity (MAG) theory [3]. This field-
theoretic scheme contains as particular cases the models based on the group
of translations (teleparallel gravity), on the local Poincaré group (Einstein–
Cartan theory is perhaps the most well known), on the conformal or de Sitter
group, and many other physically interesting theories. The gauge group of
MAG is the local general affine group, a semidirect product of the group
of translations on the general linear group GL(4, R). The corresponding
gravitational gauge potentials are the metric, coframe and connection:

gαβ , hα
i , Γiβ

α . (1)

Our notation and conventions are as in [3]. In particular, the Latin indices
label the holonomic components with respect to a natural coordinate frame
∂i, whereas the Greek indices denote the anholonomic components with
respect to an arbitrary frame eα = hi

α∂i. Alternatively, especially when the
spinor fields are absent, one can use as the fundamental gravitational field
variables the holonomic metric and connection. They are related to (1) as

gkl = gαβhα
khβ

l , Γkj
i = hi

αΓkβ
αhβ

j + hi
α∂kh

α
j . (2)

The gravitational field strengths in the metric-affine approach are the
curvature

Rkli
j = ∂kΓli

j
− ∂lΓki

j + Γkn
jΓli

n
− Γln

jΓki
n , (3)

the torsion
Tij

k = Γij
k
− Γji

k , (4)

and the nonmetricity

Qikl = −∇igkl = −∂igkl + gjlΓik
j + gkjΓil

j . (5)
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2. Model of a test particle

The Riemannian geometry arises as a special case of a general metric-
affine spacetime when the gravitational variables satisfy the conditions of the
vanishing torsion and nonmetricity, Tij

k = 0, Qijk = 0. In order to detect
the non-Riemannian structure, we need the matter which is characterized not
only by the mass (energy-momentum) but also by an additional gravitational
charge known as hypermomentum.

Here we describe the simplest model of a test particle with hypermo-
mentum. It naturally generalizes the model of a spinning particle [4]. Such
a particle is a physical point with an attached frame θk

a , where the index
a = 0, 1, 2, 3 labels its legs. This frame is different from the gravitational
variable hk

α, hence a different notation. This material frame is not or-
thonormal, moreover in accordance with the affine gauge approach the scalar
product of the frame’s vectors is itself a dynamical variable in the theory,
gklθ

k
aθl

b = gab. Like in the model of a spinning particle, [4], the material

frame θk
a is firmly attached to the “body” of a particle. However, while for

particle with spin its “body” is rigid, for a particle with hypermomentum the
“body” is elastic, and the variable internal metric gab describes its possible
deformations (along with the usual rigid rotations). Let t be an evolution
parameter, then the motion of a particle with such an internal structure is
described by the functions

xk(t) , θk
a(t) , gab(t) . (6)

The internal metric is nondegenerate, its inverse is denoted by gab. The
material frame is also nondegenerate and has the inverse θa

k, with θa
kθk

b = δa
b .

The equations of motion can be derived for a large class of models with an
unspecified Lagrangian function L = L(xk, ẋk, θk

a, θ̇k
a , gab, ġab). We assume

that L is a scalar with respect to the arbitrary coordinate transformations
and with respect to the global general linear transformations

θk
a → Λb

aθ
k
b , gab → Λc

aΛ
d
bgcd , (7)

where Λa
b is an arbitrary 4×4 real nondegenerate matrix. Under these condi-

tions, one can demonstrate that, when an elastic particle couples minimally
to the gravitational field, the Lagrangian is a scalar function of three tensor
arguments

L = L(vk, Wl
k, gkl) . (8)

Here vk := dxk/dt is the velocity and, denoting the covariant derivative
along the world line by ˙ := vk∇k, we introduce

Wl
k := θa

l θ̇k
a . (9)
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This tensor is a direct generalization of the angular velocity. It describes not
only a rotation of a frame attached, but also a deformation of the “body”.

We define (cf. [4]) the momentum Pk, the hypermomentum Jk
l, and the

symmetric stress Ikl as the variational derivatives

Pk :=
δL

δvk
, Jk

l :=
δL

δWk
l
, Ikl := 2

δL

δgkl

. (10)

The condition that the Lagrangian function L is a scalar under the general
coordinate transformations yields the identity

Pi vj = Ii
j + Wi

kJj
k − Wk

jJk
i . (11)

The symmetric part of (11) in fact determines the symmetric stress in terms
of momentum and hypermomentum.

From the variation of the action with respect to the coordinate xi(t) and
the material coframe θk

a(t) we find the equations of motion:

Ṗi = Tij
kvjPk + Rijk

lvjJk
l −

1

2
Qijk(P

jvk
− W jlJk

l + Wl
kJjl) , (12)

J̇ i
j = Wk

iJk
j − Wj

kJ i
k . (13)

This system extends the Frenkel–Mathisson equations of motion [5–9] of
a spinning particle to the most general case of dynamics of matter with
hypermomentum in the non-Riemannian spacetime manifolds.

The model of an elastic particle can be generalized to a theory of a fluid
with hypermomentum, the so-called hyperfluid [10].

3. General analysis of the equations of motion: conservation laws

The dynamical matter currents appear in the framework of the Noether
theorem for the gauge symmetry of a theory and they are the sources of
the corresponding gauge field. In MAG, these currents are determined by
the variational derivatives of the matter Lagrangian L with respect to the
gravitational gauge potentials. Thus we find the metric energy-momentum,
the canonical energy-momentum and the canonical hypermomentum, respec-
tively:

σαβ := 2
δL

δgαβ

, Σα
k :=

δL

δhα
k

, ∆β
α

k :=
δL

δΓkβ
α

. (14)

The canonical currents for the hyperfluid [10] read (uk is the 4-velocity)

Σα
k = ukPα − (hk

α − ukuα)p , ∆α
β

k = ukJα
β . (15)
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When the pressure vanishes p = 0 (the state equation of a dust), these
formulas reproduce the dynamical currents of the elastic test particle. The
densities of the 4-momentum and hypermomentum (Pα, Jα

β) thus correctly
describe the generalized charge which is the source of the gravitational field
in the gauge-theoretic scheme based on the general affine group.

The equations of motion of extended bodies in MAG (for preliminary
results see [11]) can be derived along the general lines of the Mathisson–
Papapetrou multipole expansion method which was successfully applied to
the Poincaré gauge gravity in [12, 13]. At the center of this approach one
puts the conservation laws (or, more precisely, the balance equations) of
the energy-momentum Σα

k and of the hypermomentum ∆β
α

k. The latter
generalizes the conservation law of the angular momentum, see the discussion
in [3] and more recently in [14].

The analysis within MAG [17] confirms the conclusion obtained previ-
ously in the Poincaré gauge gravity [12] that the bodies composed of the
usual matter (without microstructure) cannot detect the non-Riemannian
spacetime geometry. This result is of practical importance in connection
with the current programs of space experiments, see the discussion in [15–17].
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