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We report on the explicit form of the equations of motion of pole–
dipole particles for a very large class of gravitational theories. The non-
Riemannian framework in which the equations are derived allows for a uni-
fied description of nearly all known gravitational theories. The propagation
equations are obtained with the help of a multipole expansion method from
the conservation laws that follow from Noether’s theorem. The well-known
propagation equations of general relativity, e.g., as given by Mathisson and
Papapetrou, represent a special case in our general framework. Our formal-
ism allows for a direct identification of the couplings between the matter
currents and the gravitational field strengths in gauge gravity models. In
particular, it illustrates the need for matter with microstructure for the
detection of non-Riemannian spacetime geometries.

PACS numbers: 04.25.–g, 04.50.+h, 04.20.Fy, 04.20.Cv

1. Introduction

The link between the field equations and the equations of motion in
gravitational theories has been subject to many works. In the context of
the theory of general relativity the earliest accounts of this feature can be
found in the works of Weyl [17], Eddington [4], Einstein and Grommer [5],
Einstein, Infeld and Hoffmann [6], as well as Fock [7]. Nowadays this is
customarily addressed as the “problem of motion”.

One of the early contributers in this field — to whom’s life and work
this conference is dedicated — was Myron Mathisson, who published a se-
ries of works [9–11] on the problem of motion, in particular the systematic
account [12], over seventy years ago.

∗ Presented at the conference “Myron Mathisson: his life, work and influence on current
research”, Stefan Banach International Mathematical Center, Warsaw, Poland, 18–20
October, 2007.
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Here we provide an answer to the question of how test particles move
under the influence of the gravitational field in gauge gravity models. We
base our considerations on the theory of metric-affine gravity, see [8] for
a review. Metric-affine gravity provides a proper physical and mathematical
framework for many gravitational models, in particular it allows for a unified
description of a large class of alternative gravity theories. In contrast to
the theory of general relativity, the spacetime must no longer be structured
according to the Riemannian scheme in such a theory. Furthermore, not only
the energy-momentum, but also the hypermomentum — which describes
intrinsic properties of matter like the spin, dilation, and shear currents —
may act as source of the gravitational field.

To our knowledge the program laid out by Mathisson [12], and its later
realization by Dixon [1–3], remains unrivaled with respect to its mathemati-
cal rigor. Nevertheless, we do not employ it here but make use of a multipole
approximation scheme in the spirit of Papapetrou [15] to derive the equations
of motion of pole–dipole test particles. The reason for this is the simplicity
of the scheme and its direct applicability to the type of theories which we
are interested in.

2. Metric-affine gravity

In metric-affine gravity, besides the usual “weak” long-range Newton–
Einstein type gravity, described by the metric gij of spacetime, an additional
“strong” short-range gravity piece is mediated by the independent linear
connection Γij

k. It is different from the Riemannian (Christoffel) connection,
and the difference is described in terms of the tensors of nonmetricity Qijk :=

−∇igjk and of the torsion Sij
k := Γij

k −Γji
k which are also manifest in the

non-Riemannian pieces of the curvature Rijk
l.

The matter currents, which are the sources of the gravitational field,
are obtained by variation of the matter Lagrangian with respect to the
gravitational potentials (metric gij , coframe hα

j , connection Γij
k). This

yields the canonical energy-momentum Ti
j := hα

i δLmat/δh
α
j , the metrical

energy-momentum tij := 2δLmat/δgij , and the hypermomentum ∆i
j
k :=

δLmat/δΓki
j current.

2.1. Energy-momentum conservation

The Noether theorem for the diffeomorphism invariance of the matter
action yields the conservation law, see [14] for a recent review, of the energy-
momentum

{ }

∇j

(
Ti

j − Nikl ∆
klj
)

=

(
{ }

Rijkl −
{ }

∇i Njkl

)
∆klj . (1)



The Motion of Test Bodies with Microstructure in Gauge Gravity Models 169

Here, and in the following, curled braces “{}” denote objects which are
based on the symmetric Riemannian connection (Christoffel symbols), and

Nij
k :=

{ }

Γ ij
k − Γij

k represents the so-called distortion tensor. Equation (1)
can be identically rewritten as

{ }

∇j Ti
j = R̂ijkl ∆

klj + Nikl

{ }

∇j∆
klj , (2)

where we introduced R̂ijkl :=
{ }

Rijkl −
{ }

∇iNjkl +
{ }

∇jNikl.

2.2. Hypermomentum conservation

The Noether theorem for the invariance of metric-affine gravity under the
local general linear group yields (on the “mass shell”, i.e., when the matter
satisfies the field equations):

{ }

∇j ∆klj − Nij
k∆jli + N jli∆k

ij + T lk − tkl = 0 . (3)

3. Equations of motion

Denoting the densities of objects by a tilde “ ˜ ” the conservation equa-
tions for the canonical energy-momentum current (2) and hypermomentum
current (3), take the following form

∂jT̃ i
j = Rijk

l∆̃k
l
j + Γij

kT̃ k
j + Nij

k t̃jk , (4)

∂j∆̃
k
l
j = Γjl

m∆̃k
m

j − Γmj
k∆̃j

l
m − T̃ l

k + t̃kl . (5)

Note that Γij
k represents the full connection. The last two equations should

be compared to (42) and (43) in [18], as well as (3.13) and (3.14) in [13].

3.1. Integrated moments

We introduce the integrated multipole moments of the matter currents
as follows:

∆b1···bni
j
k : =

∫ ( n∏

α=1

δxbα

)
∆̃i

j
k ,

T b1···bn

i
j : =

∫ ( n∏

α=1

δxbα

)
T̃i

j ,

tb1···bni
j : =

∫ ( n∏

α=1

δxbα

)
t̃ij . (6)
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Here δxa := xa − Y a, where Y parametrizes the worldline. Note the dif-
ference with respect to method of Mathisson and Dixon, who use an im-
plicit definition of the moments, at this point. The integrals are taken over
a 3-dimensional slice Σ(t), at a time t, of the world tube of a test body. We
use the condensed notation

∫
f =

∫

Σ(t)

f(x) d3x . (7)

3.2. Propagation equations for pole–dipole particles

From the expressions (4) and (5) we can derive the propagation equa-
tions for pole–dipole particles1. For such bodies the following moments are
assumed to be non-vanishing: ∆i

j
k, T i

j , T i
j
k, tij , and tijk. The expansion

of geometrical quantities around the worldline Y (t) of the body into a power
series in δxa, reads

Rijk
l
∣∣∣
x

= Rijk
l
∣∣∣
Y

+ δxa Rijk
l
,a

∣∣∣
Y

+ . . . ,

Γij
k
∣∣∣
x

= Γij
k
∣∣∣
Y

+ δxa Γij
k
,a

∣∣∣
Y

+ . . . ,

Nij
k
∣∣∣
x

= Nij
k
∣∣∣
Y

+ δxa Nij
k
,a

∣∣∣
Y

+ . . . . (8)

In the following we are going to suppress the dependencies on the points
at which certain quantities are evaluated. Furthermore, we introduce new
names for the integrated quantities as follows: P i := T i

0 denotes the inte-
grated 4-momentum, Lk

l := T k
l
0 the total orbital canonical energy-momen-

tum, Y k
l := ∆k

l
0 the integrated intrinsic hypermomentum, and

Pi := P i − Nik
lY k

l −
{ }

Γ ik
lLk

l , (9)

the generalized total 4-momentum. In addition, we introduce a shorter
notation for the “convective currents”: For the intrinsic hypermomentum

we have
(c)

∆k
l
m := ∆k

l
m − vm ∆k

l
0, and for the orbital canonical energy-

momentum
(c)

T k
l
m := T k

l
m − vm T k

l
0. The fluid derivative is defined as fol-

lows ∇v Y i
k := d/dt Y i

k + vmΓmj
iY j

k − vmΓmk
jY i

j , here va := dY a/dt.
With this notation, the integrated version of the conservation laws (4)
and (5) yields the propagation equations

{ }

∇vPi =

(
{ }

Rijk
l −

{ }

∇iNjk
l

)
∆k

l
j +

{ }

Rijk
l
(c)

T k
l
j , (10)

1 More details on the derivation can be found in [16].
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T k
i = vi P k +

d

dt
Li

k −
{ }

Γ kj
l T i

l
j + Nkj

l
(c)

∆j
l
i , (11)

(c)

T (a
i
b) = 0 , (12)

∇v Y i
k = −T k

i + tik − Γjl
i
(c)

∆l
k
j + Γjk

l
(c)

∆i
l
j , (13)

(c)

∆k
l
a = T a

l
k − tak

l . (14)

The propagation equation (10) for the generalized total 4-momentum should
be compared to (5.7) in [15], (53) in [18], and (5.19) in [13]. Equation (11)
describes the canonical energy-momentum in terms of the usual combination
of the “translational” plus “orbital” contributions (the first two terms), plus
the additional contribution of the first moments. Equation (12) simply tells

us that the convective current
(c)

T a
i
b is antisymmetric in the upper indices

a and b. The next equation (13) is actually an equation of motion for the
intrinsic hypermomentum. Its form closely follows the Noether conservation
law of the hypermomentum, cf. (3). Finally, the equation (14) expresses the
convective intrinsic hypermomentum current in terms of the first moments
of the energy-momentum.

4. Conclusions

The set (10)–(14) can be viewed as the generalization of the well-known
Mathisson–Papapetrou equations for pole–dipole test particles to almost any
known gauge gravity model. The Mathisson–Papapetrou equations, as well
as previous results in the context of spacetimes with torsion [13,18], can be
easily recovered in our framework, see [16] for details.

We notice a general feature that characterizes the coupling between the
physical objects (currents) with the geometrical objects (metric, connection,
and the derived quantities). Namely, the intrinsic current (the one that is
truly microscopic, which arises from the averaging over the medium with the
elements with microstructure, i.e., that possess internal degrees of freedom)
couples to the non-Riemannian geometric quantities, see the second term
on the r.h.s. of (9) and the first term on the r.h.s. of (10). In contrast
to this, the orbital canonical energy-momentum (which is induced by the
macroscopic dynamics of the rotating and deformable body) is only coupled
to the purely Riemannian geometric variables and never couples to the non-
Riemannian geometry, see the last terms on the r.h.s. of (9) and (10). This
observation demonstrates that the possible presence of the non-Riemannian
geometry (in particular of torsion and nonmetricity) can only be tested with
the help of bodies that are constructed from media with microstructure
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(spin, dilaton charge, and intrinsic shear). Test particles, composed from
usual matter without microstructure, are not affected by the non-Riemannian
geometry, and they thus cannot be used for the detection of the torsion and
the nonmetricity.

It would be very interesting to carry out an analysis in the spirit of
Mathisson and to compare the results to the ones obtained in this work.
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for the invitation to Warsaw and their kind support. Furthermore, I am
greatly indebted to Y.N. Obukhov (Univ. Cologne and Moscow State Univ.)
and F.W. Hehl (Univ. Cologne and Univ. Missouri–Columbia) for many
stimulating discussions as well as their constant advice and interest in the
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