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The physical effects following from the Mathisson equations at the
highly relativistic motions of a spinning test particle relative to a Schwarz-
schild mass are discussed. The corresponding numerical estimates are pre-
sented.
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1. Introduction

During 70 years the Mathisson equations [1] have being investigated
by many authors with different intensity. The very fruitful years were 1970s
[2–11]. There is an interesting remark in [5], p. 111: “The simple act of

endowing a black hole with angular momentum has led to an unexpected

richness of possible physical phenomena. It seems appropriate to ask whether

endowing the test body with intrinsic spin might not also lead to surprises”.
In this context the question of importance is: can spin of a test particle
essentially change its world line and trajectory? To answer this question it
is useful to consider the Mathisson equations both in their traditional form
and in the terms of the local (tetrad) quantities connected with the moving
particle. The initial form of the Mathisson equations is [1]

D

ds

(

muλ + uµ
DSλµ

ds

)

= −1

2
uπSρσRλ

πρσ , (1)
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DSµν

ds
+ uµuσ

DSνσ

ds
− uνuσ

DSµσ

ds
= 0 , (2)

where uλ is the 4-velocity of a spinning particle, Sµν is the antisymmetric
tensor of spin, m and D/ds are, respectively, the mass and the covariant
derivative with respect to the proper time s; Rλ

πρσ is the Riemann curvature
tensor of the spacetime. (Greek indices run 1, 2, 3, 4 and Latin indices 1, 2, 3.)
Equations (1), (2) were supplemented by the condition [1]

Sµνuν = 0 , (3)

which first was used in electrodynamics [12]. Later the condition

SµνPν = 0 (4)

was introduced [2, 13], where

P ν = muν + uµ
DSνµ

ds
. (5)

Concerning the physical meaning of conditions (3) and (4) see, e.g., [14].
Besides Sµν , the 4-vector of spin sλ is also used in the literature, where

by definition [3]

sλ =
1

2

√−gελµνσuµSνσ , (6)

(g is the determinant of the metric tensor) with the relation

sλsλ =
1

2
SµνS

µν = S2
0 , (7)

where S0 is the constant of spin.

2. Mathisson equations in representation

of Ricci’s coefficients of rotation

For transformation of equations (1), (2) under condition (3) we use the

relations for the comoving orthogonal tetrads λ
(ν)
µ :

dx(i) = λ(i)
µ dxµ = 0 , dx(4) = λ(4)

µ dxµ = ds (8)

(here indices of the tetrad are placed in the parentheses). For convenience,
we choose the first local coordinate axis as oriented along the spin, then

s(1) 6= 0 , s(2) = 0 ,

s(3) = 0 , s(4) = 0 , (9)

and |s(1)| = S0.
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By (3), (8), (9) it follows from (2) that γ(i)(k)(4) = 0, i.e., the known
condition for the Fermi transport, where γ(α)(β)(γ) are Ricci’s coefficients of
rotation. From equations (1) one can find

mγ(1)(4)(4) + s(1)R(1)(4)(2)(3) = 0 , (10)

mγ(2)(4)(4) + s(1)(R(2)(4)(2)(3) − γ̇(3)(4)(4)) = 0 , (11)

mγ(3)(4)(4) + s(1)(R(3)(4)(2)(3) + γ̇(2)(4)(4)) = 0 , (12)

where a dot denote the usual derivatives with respect to s. The Ricci co-
efficients of rotation γ(i)(4)(4) have the physical meaning as the components
a(i) of the 3-acceleration of a spinning particle relative to geodesic free fall
as measured by the comoving observer.

In the linear in spin approximation equations (10)–(12) can be written
as [15]

γ(i)(4)(4) ≡ a(i) = −
s(1)

m
R(i)(4)(2)(3) . (13)

It is known that within the framework of this approximation the physical
consequences following from equations (1), (2) coincide under conditions (3)
and (4) [16, 17].

By definition of the gravitoelectric E
(i)
(k) and the gravitomagnetic B

(i)
(k)

components we have [18]

E
(i)
(k) = R(i)(4)

(k)(4) , (14)

B
(i)
(k) = −1

2
R(i)(4)

(m)(n)ε
(m)(n)

(k) . (15)

So, according to (13), (15) the acceleration a(i) is determined by B
(i)
(k).

3. Case of a Schwarzschild metric

Let us consider equation (13) for Schwarzschild metric in standard co-
ordinates x1 = r, x2 = θ, x3 =ϕ, x4 = t. The motion of an observer relative

to Schwarzschild’s mass M can be described by the orthonormal frame λ
(ν)
µ .

For expediency and without loss of generality we assume that the first tetrad
axis is perpendicular to plane determined by the direction of observer mo-
tion and the radial direction (θ = π/2), and the second axis coincides with

the direction of motion. Then the non-zero components of B
(i)
(k) are [19]

B
(1)
(2) = B

(2)
(1) =

3Mu‖u⊥

r3
√

u4u4 − 1

(

1 − 2M

r

)−1/2

,
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B
(1)
(3) = B

(3)
(1) =

3Mu2
⊥u4

r3
√

u4u4 − 1

(

1 − 2M

r

)1/2

, (16)

where u‖ = ṙ is the radial component of the observer 4-velocity , u⊥ = rϕ̇
is the tangential component.

Let a spinning particle be comoving with the observer and its spin is ori-
ented along the first tetrad axis. By (15), (16) relation (13) can be written as

a(i) =
s(1)

m
B

(1)
(i) . (17)

From (16), (17) it is easy to see that the acceleration a(i) is not equal to 0
if and only if u⊥ 6= 0, i.e., is caused by the gravitational spin–orbit in-
teraction. (The gravitational spin–orbit and spin–spin interactions in the
post-Newtonian approximation were investigated in [4].) By (16), (17) we
have

|~as.−o.| =
M

r2

3s(1)|u⊥|
mr

√

1 + u2
⊥ , (18)

where |~as.−o.| ≡
√

a2
(1) + a2

(2) + a2
(3) is the absolute value of the gravitational

spin–orbit acceleration. While investigating possible effects of spin on the
particle’s motion it is necessary to take into account the condition for a spin-
ning test particle [4]

ε ≡
|s(1)|
mr

≪ 1 . (19)

According to (18), (19), the two limiting cases are essentially different in their
physical consequences: (1) at low velocity, when |u⊥| ≪ 1, we have |~as.−o.| ≪
M/r2, where M/r2 is the Newtonian value of the free fall acceleration; (2) at
high velocity, when |u⊥| ≫ 1, for any small ε we can indicate such sufficiently
large value |u⊥| for which the value |~as.−o.| is of order M/r2. That is, in the
second case the motion of a spinning particle essentially differs from the
geodesic motion [15]. We stress that this conclusion is obtained from the
point of view of the comoving observer. Is the similar conclusion valid for an
observer which, for example, is at rest relative to the Schwarzschild mass? To
answer this question it is necessary to investigate the corresponding solutions
of equations (1), (2).

The interesting partial solutions of equations (1), (2) in a Schwarzschild
spacetime were studied in [19, 20]. Namely, it is shown that the circular
highly relativistic orbits of a spinning particle exist in the small neighbor-
hood of the value r = 3M (both for r > 3M and r < 3M) with

|u⊥| =
31/4

√
ε

(20)



Highly Relativistic Motions of Spinning Particles According to . . . 177

(i.e., according to (19), (20) we have u2
⊥ ≫ 1). These orbits differ from

the highly relativistic geodesic circular orbits, which exist only for r > 3M .
Besides, it is known that a particle without spin and with non-zero mass of
any velocity close to the velocity of light, starting in the tangential direction
from the position r = 3M , will fall on Schwarzschild’s horizon within a finite
proper time, whereas a spinning particle will remain indefinitely on the cir-
cular orbit r = 3M due to the interaction of its spin with the gravitational
field, i.e., this interaction compensates the usual (geodesic) attraction.

The highly relativistic circular orbits determined by (20) are practically
common for equations (1), (2) at conditions (3) and (4) [20]. Outside the
small neighborhood of r = 3M , for 2M < r < 3M , equations (1), (2) admit
circular highly relativistic orbits as well, however, only under condition (3)
[14, 20]. Similarly to (20), the value |u⊥| on these orbits is of order 1/

√
ε.

Some non-circular essentially non-geodesic orbits with the initial values
of |u⊥| of order 1/

√
ε were computed in [14].

4. Conclusions and numerical estimates

So, if the tangential component of the particle’s velocity is of order 1/
√

ε,
its spin can essentially deviate the particle’s trajectory from the geodesic line,
both from the point of view of the comoving observer and from the point
of view of an observer which is at rest relative to the Schwarzschild mass.
(By (18), if |u⊥| is of order 1/

√
ε, the acceleration |~as.−o.| is of order M/r2.)

The effect of the considerable space separation of spinning and non-
spinning particles takes place for the short time: less than one or two revo-
lutions of the spinning particles around a Schwarzschild mass the difference
of the radial coordinates ∆r becomes comparable with the initial radial co-
ordinate [14].

The existence of highly relativistic circular orbits of a spinning particle
in a Schwarzschild field, which differ from geodesic circular orbits, perhaps,
can be discovered in the synchrotron radiation of protons or electrons.

Let us estimate the value ε = |S0|/Mm for protons and electrons in the
cases when the Schwarzschild source is (1.) a black hole of mass that is
equal to three of the Sun’s mass, and (2.) a massive black hole of mass
that is equal to 108 of the Sun’s mass. In the first case, taking into account
the numerical values of S0,M,m in the system used, we have for protons
and electrons correspondingly εp ≈ 2 × 10−20, εe ≈ 4 × 10−17, whereas
in the second case εp ≈ 7 × 10−28, εe ≈ 10−24. Because for the motion
on above considered orbits the spinning particles must possess the velocity
corresponding to relativistic Lorentz γ-factor of order 1/

√
ε, in the first case

we obtain γp ≈ 7 × 109, γe ≈ 2× 108, and in the second case γp ≈ 4× 1013,
γe ≈ 1012.
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As we see, in the case of a massive black hole the necessary values of γp

and γe are too high even for extremely relativistic particles from the cosmic
rays. Whereas if the Schwarzschild source is a black hole of mass that
is equal to 3 of the Sun’s mass, some particles may move on the circular
orbits considered above. Analysis of a concrete model, closer to the reality,
remains to be carried out. Here we point out that by the known general
relationships for the electromagnetic synchrotron radiation in the case of
protons or electrons on the considered circular orbits we obtain the values
from the gamma-ray range.

The results of investigation of the highly relativistic considerable non-
geodesic motions of a spinning test particle according to the Mathisson equa-
tions stimulate the analysis of the corresponding quantum states which are
described by the Dirac equations [19].
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