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From the study of the asymptotic behavior of the Einstein or Einstein–
Maxwell fields, a rather unusual new structure was found. This structure
which is associated with asymptotically shearfree null congruences, appears
to have significant physical interest or consequences. More specifically it
allows us to define, at future null infinity, the center-of-mass and center-
of-charge with detailed equations of motion, for an interior gravitating-
electromagnetic system. In addition it allows for a definition of total angu-
lar momentum with its evolution equations. Though at the present time the
details remain obscure to us, nevertheless we feel that our version of equa-
tions of motion are closely related to the point of view of Myron Mathisson.
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1. Introduction

It is well known in classical field theory that often local interior informa-
tion can be found from the study of the asymptotic fields as, for example, in
Maxwell theory, the total charge and multipole moments are obtained from
different far-field components of the Maxwell tensor, while in General Rel-
ativity, (GR), the Bondi four-momentum [1] defined at future null infinity
describes the total interior energy-momentum of a gravitating system. It is
the purpose of this note to point out that a further asymptotic structure ex-
ists in GR that allows for a definition of center-of-mass and center-of-charge,
with detailed equations of motion and a definition of total angular momen-
tum with its own evolution equations. Though the calculations to obtain
them in detail are lengthy, how they originate is relatively simple. One of
the purposes of this note is to document this.

This structure, which arises for both asymptotically flat vacuum Ein-
stein and Einstein–Maxwell fields, is associated with asymptotically shear-
free null congruences and appears to have significant physical interest or
consequences. Though we know of no a priori reason for this rather myste-
rious connection, it appears to be a fact. It is more fully discussed in the
conclusion.

Since the material is unorthodox and out of the mainstream, we will
proceed in a rather heuristic fashion and try to give an overview of the
basic ideas. The details are being prepared for a more complete future
presentation.

We start with a discussion of the asymptotic Bianchi identities (histori-
cally referred to as the Bondi supplementary conditions [1]) and the asymp-
totic Maxwell equations. By making a simple assumption and using the
linearized equations, we easily see how the equations of motion originate.
This assumption is then justified (using the properties of asymptotically
shear-free null geodesic congruences) and then used in the full theory (with
approximations) to obtain our equations of motion.

The justification is argued from the existence of a unique regular asymp-
totically shear-free null geodesic congruence in any asymptotically flat space-
time. Associated with this congruence is a unique complex analytic curve
defined in the space of complex Poincare translations which has its action on
complexified null infinity, i.e., Penrose’s (complexified) I

+. This curve then
becomes, for its real part, the center of mass motion and for the imaginary
part the angular momentum.

The physical situation we are dealing with is a complicated gravitating-
electromagnetic system viewed from I

+, with a resulting Bondi asymptotic
four-momentum. First of all the complex curve yields kinematic meaning to
the Bondi four-momentum, in the sense of P a = Mva with va being the real
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part of world-line velocity. The Bondi energy-momentum expression and
its evolution then yields explicit evolution equations for both the real and
the imaginary parts of the curve. The imaginary part, which is interpreted
as the spin-angular momentum, satisfies its own evolution equation while
the real part yields equations of motion for a spinning particle — with spin
coupling terms. Much of the physical identification arises from a comparison
of the radiation terms — both electromagnetic and gravitational — with
the variables associated with the complex world-line. We even obtain the
classical radiation reaction terms with the ‘correct’ numerical coefficients
without model building.

The approach to motion in GR that we use is completely outside of
mainstream ideas and is therefore difficult to understand on first viewing. It
is the reason we are giving heuristic description rather than giving a detailed
presentation. To help, several points must be clarified at the start:

(a) We are dealing with the total system — a closed gravitating-electro-
magnetic system viewed from the far field. No external forces are
acting on it.

(b) We are dealing with real space-times — but we are assuming that all
the relevant fields and functions are analytic and can be extended at
least a small way into the complex space-time.

(c) In some sense this work is “observational theory” since there was no
a priori reason for the ideas developed here to yield anything of phys-
ical value or interest. The observation was that shear-free or asymp-
totically shear-free null geodesic congruences are of considerable im-
portance in GR and (among other items [2]) that they are connected
in an intrinsic way to equations of motion.

2. The asymptotic Bianchi identities

In the study of asymptotically flat space-times (Einstein or Maxwell–
Einstein) after one integrates the radial behavior of the relevant Einstein
equations [3] one ends with a set of equations that ‘live’ on null infinity or
I

+. I
+, a three-dimensional null surface, S2xR, coordinatized by the Bondi

coordinates (u, ζ, ζ), u real and (ζ, ζ ) the complex stereographic coordinate
on the S2, represents the future endpoints of all null geodesics. The remain-
ing variables are essentially the leading terms in different components of the
Weyl tensor. The basic asymptotic relationship, (the peeling theorem [3]),
using spin-coefficient notation, is

ψ0 =
ψ0

0

r5
+ 0(r−6) , (1)
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ψ1 =
ψ0

1

r4
+ 0(r−5) , (2)

ψ2 =
ψ0

2

r3
+ 0(r−4) , (3)

ψ3 =
ψ0

3

r2
+ 0(r−3) , (4)

ψ4 =
ψ0

4

r
+ 0(r−2) , (5)

with similar results for the asymptotic Maxwell field

φ0 =
φ0

0

r3
+ 0(r−4) , (6)

φ1 =
φ0

1

r2
+ 0(r−3) , (7)

φ2 =
φ0

2

r
+ 0(r−2) . (8)

The leading terms satisfy the asymptotic Bianchi identities and asymptotic
Maxwell equations [3]

(ψ0
0 )· = −ðψ0

1 + 3σψ0
2 + 3kφ0

0φ
0
2 , (9)

(ψ0
1 )· = −ðψ0

2 + 2σψ0
3 + 2kφ0

1φ
0
2 , (10)

(ψ0
2 )· = −ðψ0

3 + σψ0
4 + kφ0

2φ
0
2 , (11)

ψ0
3 = ð(σ)· , (12)

ψ0
4 = −(σ)·· , (13)

Ψ = Ψ = ψ0
2 + ð

2σ + σ(σ)· , (14)

(φ0
0)

· + ðφ0
1 − σφ0

2 = 0 , (15)

(φ0
1)

· + ðφ0
2 = 0 , (16)

where dot indicates u-derivatives, the asymptotic shear, (the null data),

σ = σ(u, ζ, ζ)

is an arbitrary complex spin-wt-2 function on I
+ and

k =
2G

c4
. (17)

Our idea is to first summarize known physical ideas from these equations
and then with a simple assumption (in the linearized version) find further
physical content in the equations.
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Each of the terms will be expanded in spin-s tensor harmonics [4] as

φ0
0 = φ0

0iY
1
1i + φ0

0ijY
1
2ij + . . . ,

φ0
1 = Q+ φ0

1iY
0
1i + φ0

1ijY
0
2ij + . ,

φ0
2 = φ0

2iY
−1
1i + φ0

2ijY
−1
2ij + . . . ,

ψ0
1 = ψ0

1iY
1
1i + ψ0

1ijY
1
2ij + . . . ,

ψ0
2 = Υ + ψ0

2iY
0
1i + ψ0

2ijY
0
2ij + . . . . (18)

First we point out that the l = (0, 1) components of the Mass Aspect, Ψ ,

contain the Bondi four momentum via

Ψ(u, ζ, ζ) = Ψ(u, ζ, ζ) = −2
√

2G

c2
M − 6G

c3
P iY 0

1i + . . . (19)

i.e., the l = 0 part is basically the mass while the l = 1 part is the total
linear momentum of the system with the further property that the mass
and momentum are real. In the linearized version of the mass aspect we
would have

ψ0
2 (u, ζ, ζ) = ψ

0
2 (u, ζ, ζ) = −2

√
2G

c2
M − 6G

c3
P iY 0

1i + . . . . (20)

Now considering the linearization (off Reissner–Nordstrom) of Eq. (10),
obtaining

(ψ0
1 )· = −ðψ0

2 + 2kφ0
1φ

0
2 .

where φ0
1 = Q, the total coulomb charge and φ0

2 is proportional to the
complex (electric + imagnetic) dipole radiation fields written as Q η̈ i with
η̈ i the “complex” center of charge. Looking only at the l = 1 part of this
equation we have

ψ0
1i
· = 2ψ0

2i +BQ2η̈ i

or, for ease, hiding the known numerical factors in the A and B, we have

ψ0
1i
· = APi +BQ2η̈ i . (21)

Now, roughly speaking, it would appear as if ψ0
1i could be interpreted as

being proportional to the mass dipole moment (so that its derivative would
look like Mv) and thus have the form

ψ0
1i = αMξi , (22)

where ξi would be interpreted as the center of mass and α is an adjustable
parameter to be determined. However, since ψ0

1i is in general complex, we
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will take ξi as a complex displacement vector depending on u. This now
becomes our assumption: we assume that ψ0

1i = αMξi. This leads to

Pi =
α

A
Mvi −

B

A
Q2 η̈i .

If α = A, B
A

= 2
3c

−3 and η i = ξi , we would have

Pi = Mvi −
2

3
c−3Q2(ξ i)

·· ,

vi = ξ·i = vRi + ivIi = ξ·Ri + iξ·Ii .

Using the conditions that M and Pi are real, leads to

Pi = MvRi −
2

3
c−3Q2(ξRi)

·· ,

0 = MvIi +
2

3
c−3Q2(ξIi)

·· ,

where the subscripts R and I denote the real and imaginary parts. The first
of this pair is the well-known classical kinematic expression for the linear
momentum of a charged particle that leads to the radiation reaction force.
The second of the pair, [when Q = 0] expresses conservation of angular
momentum if angular momentum was defined by

Si = McξIi .

(In the case of the Kerr metric, this, in fact, is the angular momentum.)

The equations of motion now follow immediately from the Eq. (11) by
simply replacing the Bondi momentum by its kinematic expression, leading
in the linearized version, to

M(vRi)
· =

2

3c3
Q2(ξRi)

··· ,

i.e., equations of motion with the classical radiation reaction force.

This heuristic derivation of the equations of motion involved, in addition
to the linearization, the arbitrary introduction of the complex displacement
vector ξi. In the next sections we will show that there is a very pretty geo-
metric construction such that this complex vector arises naturally with the
correct value for the constant α. This construction is then used in the full
theory.
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3. Justification: the geometric origin

for the complex displacement

We begin a digression with a few words about null infinity, I
+. We are

working with an arbitrary choice of Bondi coordinates (u, ζ, ζ) and Bondi
tetrad (l, n,m,m) on I

+. (All our results are invariant under BMS trans-
formations of the Bondi coordinates.) At each point of I

+we consider an
arbitrary null direction pointing backwards into the space-time denoted by
l∗ and given by the null rotation around na,

l∗a = la − Lma − Lma + LLna ,

m∗a = ma − Lna ,

n∗a = na , (23)

where

L = L(u, ζ, ζ)

is, for the moment, an arbitrary angle field on I
+. The family of all such

null directions, l∗a, defines the initial directions at I
+ of a null geodesic con-

gruence going backwards into the space-time. If the function L = L(u, ζ, ζ)
satisfies the differential relation [5, 6]

ðL+ LL· = σ(u, ζ, ζ) (24)

then L determines a shear-free null geodesic congruence. We are interested
only in the regular congruences, i.e., those that do not contain geodesics
that are tangent to I

+. The regular family of solutions L are determined by
the following:

• Defining a potential for L, namely τ = T (u, ζ, ζ), with its inverse
function, u = X(τ, ζ, ζ), by

L = −ðT

T ·
. (25)

L(u, ζ, ζ) can be written parametrically (after taking implicit derivatives) as

L(u, ζ, ζ) = ð(τ)X(τ, ζ, ζ) ,

τ = T (u, ζ, ζ)

and Eq. (24) becomes

ð
2
(τ)X(τ, ζ, ζ) = σ(X, ζ, ζ) . (26)

The subscript (τ) means ð holding τ constant.
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• The solutions [6,7] to Eq. (26) forX(τ, ζ, ζ) and hence also for L(u, ζ, ζ),
are determined by four arbitrary complex functions, ξa of the complex pa-
rameter τ, that we interpret as an arbitrary world-line in the space of com-
plex Poincare translations acting on complexified I

+. The solution can be
written in a spherical harmonic expansion as

u = X(τ, ζ, ζ)

= ξa(τ)l̂a(ζ, ζ) +Xl≥2(τ, ζ, ζ) , (27)

L(u, ζ, ζ) = ð(τ)X(τ, ζ, ζ) = ξa(τ)m̂a(ζ, ζ) + ð(τ)Xl≥2(τ, ζ, ζ) , (28)

where l̂a(ζ, ζ) are the first four spherical harmonics arranged as a Lorentzian
null vector

l̂a(ζ, ζ) =

√
2

2

(
1,

ζ + ζ

1 + ζζ
,−i ζ − ζ

1 + ζζ
,
−1 + ζζ

1 + ζζ

)
,

m̂a(ζ, ζ) =

√
2

2P

(
0, 1 − ζ

2
,−i

(
1 + ζ

2
)
, 2ζ
)
,

and m̂a = ðl̂a. We see that the first four harmonics of X are arbitrary,
while the higher, l ≧ 2, are determined by σ(u, ζ, ζ).

We thus have:

• Theorem: In any asymptotically flat space-time each member of the
set of regular asymptotically shear-free null geodesic congruences is
determined by an arbitrary complex word-line in the space of complex
Poincare translations. �

After it is made unique by a specific physical argument, complex world-
line becomes the complex displacement vector of our heuristic discus-
sion. In order to describe this argument we first note that the null
rotation Eq. (23) changes the tetrad components of both the Weyl
tensor and Maxwell tensor. For us the relevant changes are

ψ∗0
1 = ψ0

1 − 3Lψ0
2 + 3L2ψ0

3 − L3ψ0
4 ,

φ∗00 = φ0
0 − 2Lφ0

1 + L2φ0
2 .

Remark 1 If by chance we were considering a Robinson–Trautman space-
time or a Type II twisting space-time, (with or without a Maxwell field),
there would be a unique choice of the complex world-line (or its asso-
ciated L(u, ζ, ζ)) such that

ψ∗0
1 = 0 ,

φ∗00 = 0 .
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In an arbitrary asymptotically flat space-time such an L(u, ζ, ζ) cannot
be found.

Though we cannot, in general, make ψ∗0
1 = 0 (nor the φ∗00 = 0), nev-

ertheless using the freedom to freely choose the complex world-line, we can
make either the l = 1 harmonic of ψ∗0

1 or of φ∗00 vanish. In other words,
in general, when a Maxwell field is present, there are two distinct complex
world-lines making, respectively, the l = 1 harmonic of ψ∗0

1 or of φ∗00 vanish.
For the remainder of this work we restrict the discussion (when there is a
Maxwell field) to the case where the two world-lines coincide.

Without a Maxwell field, there is no restriction. We thus choose L(u, ζ, ζ)
so that

ψ∗0
1 |l=1 = 0 =

(
ψ0

1 − 3Lψ0
2 + 3L2ψ0

3 − L3ψ0
4

)
|l=1

or determine ψ0
1i by

ψ0
1i =

(
3Lψ0

2 − 3L2ψ0
3 + L3ψ0

4

)
|l=1 . (29)

It is this condition that is the geometric justification for Eq. (22). From
Eqs. (28) and (20), we immediately see the form of the first (or linear) term,
i.e.,

(3Lψ0
2)i = αMξi

with the numerical factor, no longer arbitrary, but now explicitly determined.
The full expression for ψ0

1i is far more complicated than it was in our heuristic
description.

The plan of operation is to take Eq. (29) and use it in Eqs. (10) and (19)
to determine the Bondi three-momentum which takes the kinematic form

P i = M(ξi)· + . . . .

The required calculations are long and rather complicated with little hope
of finding exact expressions. Approximations are necessary. Specifically we
assume that we are doing perturbations off either Schwarzschild or Reissner–
Nordstrom. The mass and charge are considered as zero order while other
basic quantities are treated as small or first order. In non-linear expressions
we keep only terms up to second order. In addition, in the spherical harmonic
expansions we keep only the l = 0, 1, 2 harmonics. Extensive use is made of
Clebsch–Gordon expansions. In the remainder of the paper we will simply
report on the main results.
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4. Results

We start with Eq. (27), i.e., X(τ, ζ, ζ) written (with first order ξi) in the
form

u ≡ w√
2

= X(τ, ζ, ζ)

=
1√
2
ξ0(τ) − 1

2
ξi(τ)Y 0

1i(ζ, ζ) + ξij(τ)Y 0
2ij(ζ, ζ) + . . . , (30)

ξa = (ξ0, ξi(τ)) = (τ, ξi(τ)) , (31)

and its inverse

τ = T (u, ζ, ζ) = w +

√
2

2
ξi(w)Y 0

1i(ζ, ζ) −
√

2ξij(w)Y 0
1ij(ζ, ζ) + . . . (32)

with w real. The complex ξi(w) is decomposed into its real and imaginary
parts

ξa(w) = ξa
R(w) + iξa

I (w) ,

ξa ′ ≡ va(w) = va
R(w) + iva

I (w) .

The freedom in the choice of τ ⇒ τ∗ = F (τ) allows us to give va
R(w) the

Lorentzian norm, v2
R = 1.

Note that we can simplify all the calculations by reversing the standard
point of view where the free characteristic data for the gravitational field is
the Bondi shear, σ(u, ζ, ζ). We can, instead, take X(τ, ζ, ζ) as the free data
and then determine the shear, parametrically, from

ð
2
(τ)X(τ, ζ, ζ) = σ(X, ζ, ζ) , (33)

implying

σ(u, ζ, ζ) = 24ξij (τ)Y 2
2ij ,

u = X(τ, ζ, ζ) .

This avoids having to integrate beginning with knowledge of σ(u, ζ, ζ).
Remark 2 Though u is the conventional Bondi time, it is more appropriate
to use w =

√
2u, it being the retarded time. Derivatives with respect to u

are denoted by dot, i.e., (·), while w derivatives are given by a prime, (′).
Remark 3 Almost all expressions are first calculated with the complex τ

parameter and then re-expressed in terms of the w via Eq. (32). It is this
process that is lengthy.
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Our first task is to describe the relevant Maxwell components obtained
from the integration of Eqs. (15) and (16), [9]

φ0
1i =

√
2Q

[
vi(w) + i

1

2
ǫijlv

l′ξj +N i′

]
+ i

√
2Qǫkjiv

j′ξk − 2

5
(φ0′

0kiξ
k)′

−72

5
Qvjvij + i

24
√

2

15
ǫljiφ

0′′
0kjξ

lk − i
24
√

2

5
ǫjli(φ

0′
0mlξ

jm )′ ,

φ0
2i = −2Q

[
vi′ + i

1

2
ǫijl(v

l′ξj)′ +N i′′

]
− i2Qǫkji(v

j′ξk)′ +
2
√

2

5
(φ0′

0kiξ
k)′′

+
72
√

2

5
Q(vjvij )′ − 48

15
iǫlji(φ

0′′
0kjξ

lk )′ + i
48

5
ǫjli(φ

0′
0mlξ

jm )′′ ,

N i =
6
√

2

5
vkξki − 18

√
2

5
vki ξk + i

144

5
ǫjmiv

kj ξmk .

Remark 4 We have (for notational simplicity) totally abused standard no-
tion. We allow the indices (i, j, k, l . . .), which are Euclidean, to be raised
and lowered with impunity and allow repeated indices, e.g., vkξki , to indicate
summation.

Using these fields, with our approximations, Eq. (29) becomes

ψ0
1i = 3Υ

[
ξi(w) + i

1

2
ǫkjiv

kξj +N i

]
+ i

3
√

2

2
ǫljiψ

0
2jξ

l − 18

5
ψ0

2ijξ
j

− i
6 · 36

√
2

5
ψ0

2kjξ
kl ǫlji −

6 · 18
5

ψ0
2jξ

ij . (34)

Substituting Eq. (34) in (10) leads, after considerable effort and use of
the real part of reality conditions, (14), to the full kinematic expression for
the linear momentum of the system.

P k = Mvk
R +

M

c

(
vi
Rv

j
I − ξi

Iv
j ′
R − (ξi

Rv
j
I )

′
)
ǫijk −

2Q2

3c3
vk ′
R

+
2Q2

3c4
[2ξi

Iv
j ′
R − ξi

Rv
j ′
I + vi

Rv
j
I ]
′ǫijk + Π

k , (35)

Π
k = −M

c

(
6
√

2

5

[
8
(
ξki
R v

i
R − ξki

I v
i
I

)
+ 3

(
vki
R ξ

i
R − vki

I ξ
i
I

)]
′

+
144

5

(
vil ′
R ξ

ij
I + vil ′

I ξ
ij
R

)
ǫljk

)

+
Q2

3c4

(
18(6)

√
2

5

(
vi ′
Rξ

ik
R + vi ′

I ξ
ik
I

) ′

+
96
√

2

5

(
vki
R v

i
R − vki

I v
i
I

) ′
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−12
√

2

5

(
ξki
R v

i ′
R − ξki

I v
i ′
I

) ′

+
(36)

√
2

5

(
vki ′
R ξi

R − vki ′
I ξi

I

)′

+
288

5

(
vil ′
R ξ

ij
I + vil ′

I ξ
ij
R

)′
ǫljk

)

+
Q

3c4

(
24

5
√

2c

(
D

ij ′′
E ξil

I +D
ij ′′
M ξil

R

)′′
ǫljk −

1

5c

(
ξi
RD

ik ′′
E − ξi

ID
ik ′′
M

)′′

− 24

15
√

2c

(
D

ij ′′′
E ξil

I +D
ij ′ ′′
M ξil

R

)′
ǫljk

− 1

5c

(
vi ′
RD

ik ′′
E + vi ′

I D
ik ′′
M

)
+

1

5c

(
vi
RD

ik ′′′
E + vi

ID
ik ′′′
M

))

+
1

490c6

(
D

ij ′′
M Dil ′′′

E −D
ij ′′
E Dil ′′′

M

)
ǫljk −

36
√

2 c2

5G

(
ξi
Rξ

ik
R + ξi

Iξ
ik
I

)′

+
2(24)2c2

5G

(
v

ij
R ξ

il
I + ξ

ij
Rv

il
I

)
ǫljk . (36)

All non-linear terms involving the quadrupole terms are gathered into
the Π

k.

The vanishing of the imaginary part of the reality condition yields the
relations

Jk ′ =
2Q2

3c3

(
vi ′
Rv

j
R + vi ′

I v
j
I

)
ǫljk +

1

90c5

(
D

ij ′′
E Dil ′′′

E +D
ij ′′
M Dil ′′′

M

)
ǫljk

−(24)2c3

5G

(
ξil
Rv

ij
R + ξil

I v
ij
I

)
ǫljk , (37)

where Jk, identified (from the dynamics rather than through the conven-
tional symmetry argument) as the total angular momentum, is given by

Jk ≡ Mcξk
I +

2Q2

3c2
vk
I +M

(
ξi
Rv

j
R − ξi

Iv
j
I

)
ǫijk

−2Q2
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)
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−288
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D
lj
E and D

ij
M are respectively the electric quadrupole and magnetic quad-

rupole moments found from the l = 2 radiation term in the solution of the
Maxwell equations.

Eq. (37) describes the loss of angular momentum. These relations,
though now quite complicated, do simplify considerably when the dynamic
equations for P i are used.

{In the absence of a Maxwell field, these equations for P and J simplify
to

P k = Mvk
R +

M

c
(vi

Rv
j
I − ξi

Iv
j′
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I )
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Π
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and
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Kk = −M
(
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.

In this form it is simpler to look for the physical meaning of many of the
terms.}

Though we do not have a fundamental argument for the identification of
Jk with angular momentum, there are several points worth noting.
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• For the charged spinning particle metric [8] the spin angular momen-
tum is given by

Sk = Jk ≡Mcξk
I .

• The second term in J, namely

Mξi
Rv

j
Rǫijk = ξi

Rp
j
Rǫijk = (rxp)k

is the orbital angular momentum which has appeared naturally. The
third term in J is identified as the precession of the spin vector.

• The second term in P i, namely

M

c
ξi′
I v

j
Rǫijk = c−2Si′v

j
Rǫijk = c−2(S ′xv)k

is the Mathisson–Papapetrou term in the linear momentum.

• The angular momentum equations are in the form of a conservation law
where there is very little freedom to move terms from one side to the
other. Our (tentative) identification of J with angular momentum thus
comes from dynamic considerations rather than the usual symmetry
arguments.

To determine the equations of motion for ξi
R we go to Eq. (11). Re-

expressing ψ0
2 in terms of the mass aspect and looking only at the l = 0, 1,

terms, Eq. (11) becomes

M ′ = − G

5c7

(
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MassQ

ij ′′′
Mass +Q
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SpinQ
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M D
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M

)
, (39)

P k ′ = F k ≡ 2G
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ǫilk , (40)

where we have identified the gravitational quadrupoles via

ξij =
(
ξ
ij
R + iξ

ij
I

)
=

G

12
√

2c4

(
Q

ij′′
Mass + iQ

ij′′
Spin

)
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In addition
Q
(
ξi
R + iξi

I

)
= Di

E + iDi
M

are the electric and magnetic dipole moments. With these identifications,
the mass loss equation is the classical energy-loss by electromagnetic dipole
and quadrupole radiation and gravitational quadrupole radiation.

Finally substituting P from Eq. (35), we obtain our equations of motion

Mvk ′
R =

2Q2

3c3
vk ′′
R +

M

c

(
ξi
Rv

j ′
I + ξi

Iv
j ′
R

)′
ǫijk

−2Q2

3c4

[
2ξi

Iv
j ′
R − ξi

Rv
j ′
I + vi

Rv
j
I

]′′
ǫijk −M ′vk

R − Π
k ′ + F k .

These equations contain the classical radiation reaction term with its asso-
ciated unstable behavior. The question naturally arises do the other terms
suppress this unstable behavior? Though it is hard to work through this
issue in the present situation, we note that if there was no suppression, the
Einstein–Maxwell equations (in this case) would be unstable since the coin-
ciding center of mass/charge world-line would undergo unlimited accelera-
tion leading to unlimited electromagnetic radiation even if the quadrupoles
were shut off. It is possible that there could be a theorem, from the Cauchy
problem, on the general stability of this type of coupling of Maxwell the-
ory to GR. In that case we would have the result that GR suppresses the
classical electromagnetic runaway behavior.

5. Discussion and conclusions

We have argued here that there is considerably more information hidden
in the asymptotic fields of the Einstein and Einstein–Maxwell equations
than was conventionally believed. First we pointed out that in linear theory
the simple introduction of a complex time-dependent displacement vector,
ξa(u), led in a heuristic manner to both a definition of angular momentum
with its conservation law and a definition of center of mass with its evolution
equations. The issue was where does this displacement vector come from?
It must have a geometric meaning with invariance under the BMS group.
Without any claim for its uniqueness, we have shown that a surprising but
natural potential origin for the ξa lies in the properties of shear-free or
asymptotically shear-free null geodesic congruences. If one comes to GR
without a background, there is no a priori reason to suspect that shear-
freeness of null geodesic congruences are of any importance. Nevertheless,
over the years, first from the study of algebraically special metrics, with the
beautiful Goldberg–Sachs theorem [10], then in Penrose’s development of
twistor theory and on to the theory of H-space, we have seen or suspected



194 E.T. Newman, G. Silva-Ortigoza, C. Kozameh

that there is something of fundamental importance in these congruences.
We thus invoked the theorem [6] that every regular asymptotically shear-free
null geodesic congruence in an asymptotically flat space-time is generated
by a complex world-line in the space of the complex Poincare translations.
By generalizing the idea from algebraically special metric, where the tangent
vectors to the congruence are chosen so that a component of the Weyl tensor
vanishes, to requiring just the l = 1 harmonic of the same Weyl tensor
component to vanish we were able to obtain a unique regular congruence and
complex world-line. The complex vector describing the world-line becomes
ξa(u), the displacement vector whose real part yields the center of mass
world-line and whose imaginary part describes the spin angular moment.

The main defense for this construction of ξa(u) lies in the final results,
i.e., in the precise equations of motion that are obtained. Everything follows
from our requirement of the vanishing of a specific Weyl tensor component
− with no further use of adjustable parameters or model building. For the
vacuum case our results are general, with a Maxwell field we have considered
only the special case where there is a non-vanishing total charge, Q, and
where the two complex world-lines coincide. Though there are many metrics
with this property it appears almost certain that this is a severe restriction
on the class of Einstein–Maxwell solutions.

• There are many terms that are familiar from classical mechanics or
electrodynamics that appear with the correct numerical coefficients.

• The radiation reaction term arises (with the correct numerical coeffi-
cients) without any model building or renormalization.

• The Mathisson–Papapetrou spin-velocity coupling term appears in the
momentum.

• The spin angular momentum of the Kerr–Newman metric [8] (and all
type II twisting metrics [9]) arises from the same geometric construc-
tion used here, it being a special case of the present construction.

• Orbital angular momentum, rxp and spin precession simply appear
in the expression that has tentatively been identified as total angular
momentum. This total angular momentum satisfies a conservation law
with a well-defined unambiguous flux.

• When a Maxwell field is present we obtain the Dirac value of the
gyromagnetic ratio, i.e., g = 2.
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• The radiation fields (both electric and magnetic dipole and quadru-
poles) are exactly the same as found in the classical treatment. The
gravitational radiation involved an identification of our variable with
the gravitational quadrupole.

• There are predictions of new kinematic terms in the momentum and
angular momentum as well as new spin-velocity interactions in the
equations of motion. Many of these terms can be interpreted as grav-
itational radiation reaction. For example, there is a kinematic con-
tribution to the mass from the quadrupole terms. Though all these
affects are extremely small, they might in the future be detectable.

• There is even the possibility that we can see how gravitational inter-
actions suppress the unpleasant classical instabilities from the electro-
magnetic radiation reaction.

• Our construction is invariant under the BMS group.

It is this list that give us confidence that we are on a correct path and
that shear-free and asymptotically shear-free null geodesic congruences are
indeed of considerable importance in basic physics.

In a future publication many of the details omitted here will be fully
described.
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