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The motion of spinning relativistic particles in external electromagnetic
and gravitational fields is considered. A simple derivation of the spin inter-
action with gravitational field is presented. The self-consistent description
of the spin corrections to the equations of motion is built with the non-
covariant description of spin and with the usual, “naïve” definition of the
coordinate of a relativistic particle.
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1. Introduction

The pioneering paper [1] by Myron Mathisson on the relativistic equa-
tions of motion for spinning particle in a gravitational field was published in
Acta Physica Polonica. I truly appreciate the invitation to submit a review
on the subject to this journal.

The general problem of the motion of a relativistic particle with inter-
nal angular momentum (spin) in external electromagnetic and gravitational
fields consists of two parts: the description of the spin precession and ac-
counting for the spin influence on the trajectory of particle motion.

As to the first part of the problem, that of the spin evolution by itself, it
is essentially settled, starting with the paper by Mathisson [1] (see also [2]).
A relatively simple derivation of the corresponding relativistic equations,
both in electrodynamics and gravity, is presented below, together with the
detailed discussion of the limits of applicability for these equations.

The situation is different with the second part of the problem, i.e., how
the interaction of spin with an external field influences the trajectory of
a particle. On the one hand, there is an old prejudice according to which

∗ Prepared for inclusion in the proceedings of the conference “Myron Mathisson: his life,
work and influence on current research”, Stefan Banach International Mathematical
Center, Warsaw, Poland, 18–20 October 2007 .
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for elementary particles this influence is unobservable by virtue of the un-
certainty relation. On the other hand, there are serious disagreements on
the exact form of the effect.

The discussed effect in electromagnetic field is of real physical interest,
being related to the problem of separating different polarizations of rela-
tivistic particles in accelerators. However, as mentioned, it is not as obvious
whether one can observe in practice the discussed spin corrections to the
equations of motion of elementary particles, for instance, electron or proton.
According to the well-known observation by Bohr (quoted in [3]), an addi-
tional Lorentz force due to the finite size of the wave packet of a charged
particle and to the uncertainty relation, is on the same order of magnitude
as the corresponding component of the Stern–Gerlach force. However, this
argument by itself does not exclude in principle the possibility to observe
a regular Stern–Gerlach effect, even a small one, in the presence of a com-
parable background due to the uncertainty relation. It is sufficient to recall
quite common situation when the accuracy with which the energy of an
unstable level is known, is much better than the width of this level.

Besides, not only spin-dependent correlations certainly exist in differen-
tial cross sections of scattering processes, but they are effectively used to
separate particles of different polarizations. That is why it was proposed
long ago to separate charged particles of different polarizations in a storage
ring through the spin interaction with external fields [4]. Though this pro-
posal is discussed rather actively (see, for instance, review [5]), it is not clear
up to now whether it is feasible technically.

On the other hand, certainly there are macroscopic objects for which
internal rotation influences their trajectories. We mean the motion of Kerr
black holes in external gravitational fields. This problem is of importance in
particular for the calculation of the gravitational radiation of binary stars.
In this connection it was considered in [6–9]. However, the equations of
motion taking account of the spin influence to lowest nonvanishing order
in c−2, used in these papers, lead to results which differ from the well-
known gravitational spin–orbit interaction even in the simpler case of an
external field. As will be demonstrated below, the disagreement originates
from different definitions of the center-of-mass coordinate. In the analysis
of this disagreement and in the solution of the problem we follow [10–13].

2. Equations of motion of spin in electromagnetic field

The equations of motion for spin of a relativistic particle in electromag-
netic field are well known. However, since the general problem of the spin
interaction with external gravitational field reduces to the analogous prob-
lem for the case of an external electromagnetic field, it is pertinent to start
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the detailed analysis of the subject in this way. Besides, the subtleties with
the definition of the center-of-mass coordinate can be essentially elucidated
in this problem, which is somewhat more simple than the gravitational one.

2.1. Covariant equation of motion of spin

Let us consider at first the spin precession for a nonrelativistic charged
particle. The equation that describes this precession is well known:

ṡ =
eg

2m
[s×B] . (1)

Here B is an external magnetic field, e and m are the charge and mass of
the particle, g is its gyromagnetic ratio (for electron g ≈ 2). In other words,
the spin precesses around the direction of magnetic field with the frequency
−(eg/2m)B. In the same nonrelativistic limit the velocity precesses around
the direction of B with the frequency −(e/m)B:

v̇ =
e

m
[v ×B] . (2)

Thus, for g = 2 spin and velocity precess with the same frequency, so that
the angle between them is conserved.

Let us note that both equations, (1) and (2), hold as Heisenberg equa-
tions of motion in an external field for the spin and velocity operators,
s and v. On the other hand, being averaged over properly localized wave
packets, these equations go over into the (semi)classical equations of motion
for spin and velocity. This refers also to the relativistic generalizations of
Eq. (1), discussed in this section below.

We will consider at first the covariant semiclassical formalism using the
four-dimensional vector of spin Sµ. This 4-vector is defined as follows. In the
particle rest frame Sµ has no time component and reduces to the common
three-dimensional vector of spin s, i.e., in this frame Sµ = (0, s). In the
reference frame where the particle moves with velocity v, the vector Sµ is
constructed from (0, s) by means of the Lorentz transformation, so that here

S0 = γvs , S = s +
γ2v(vs)

γ + 1
. (3)

Then, just by definition of Sµ, the following identities take place:

SµSµ = −s2(= const) , Sµuµ = 0 ; (4)

as usual, here uµ is the four-velocity. It should be emphasized that it is just
the velocity, which is a parameter of the Lorentz group, that enters these
relations (but not the canonical momentum, which is not even a gauge-
invariant vector).
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The right-hand side of the equation for dSµ/dτ (here and below τ is the
proper time) should be linear and homogeneous both in the electromagnetic
field strength Fµν , and in the same four-vector Sµ, and may depend also
on uµ. By virtue of the first identity (4), the right-hand side should be
four-dimensionally orthogonal to Sµ. Therefore, the general structure of the
equation we are looking for is

dSµ

dτ
= αFµνSν + βuµFνλuνSλ . (5)

Comparing the nonrelativistic limit of this equation with (1), we find

α =
eg

2m
.

Now we take into account the second identity (4), which after differentiation
in τ gives

uµ
dSµ

dτ
= −Sµ

duµ

dτ
,

and recall the classical equation of motion for a charge:

m
duµ

dτ
= eFµνuν . (6)

Then, multiplying Eq. (5) by uµ, we obtain

β = − e

2m
(g − 2) .

Thus, the covariant equation of motion for spin is [14–16]

dSµ

dτ
=

eg

2m
FµνSν −

e

2m
(g − 2)uµFνλuνSλ . (7)

Let us discuss the limits of applicability for this equation.
Of course, typical distances at which the trajectory changes (for instance,

the Larmor radius in a magnetic field) should be large as compared to the
de Broglie wave length ~/p of the elementary particle. Then, the external
field itself should not change essentially at the distances on the order of both
the de Broglie wave length ~/p and the Compton wave length ~/(mc) of the
particle. In particular, if the last condition does not hold, the scatter of
velocities in the rest frame is not small as compared to c, and one cannot
use in this frame the nonrelativistic formulae.

Besides, if the external field changes rapidly, the motion of spin will be
influenced by interaction of higher electromagnetic multipoles of the particle
with field gradients. For a particle of spin 1/2 higher multipoles are absent,
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and the gradient-dependent effects are due to finite form factors of the par-
ticle. These effects start here at least in second order in field gradients and
usually are negligible.

At last, in Eq. (7) we confine to effects of first order in the external field.
This approximation relies in fact on the implicit assumption that the first-
order interaction with the external field is less than the excitation energy
of the spinning system. Usually this assumption is true and the first-order
Eq. (7) is valid. Still, one can easily point out situations when this is not
the case. To be definite, let us consider the hydrogen-like ion 3He+ in the
ground s-state with the total spin F = 1. It can be easily demonstrated that
an already quite moderate external magnetic field is sufficient to break the
hyperfine interaction between the electron and nuclear magnetic moments
(a sort of Paschen–Back effect). Then, instead of a precession of the total
spin F of the ion, which should be described by Eq. (1) or (7) with a cor-
responding ion g-factor, we will have a separate precession of the decoupled
electron and nuclear spins.

Let us go back now to Eq. (7). We note that for g = 2 and in the absence
of electric field, its zeroth component reduces to

dS0

dτ
= 0 .

Taking into account definition (3) for S0 and the fact that in a magnetic field
a particle energy remains constant, we find immediately that the projection
of spin s onto velocity, so-called helicity, is conserved.

2.2. Noncovariant equation of motion for spin of relativistic particle.

Thomas precession

We will obtain now the relativistic equation for the three-dimensional
vector of spin s, that directly describes the internal angular momentum
of a particle in its “momentary” rest frame. This equation can be de-
rived from (7) using relations (3), together with the equations of motion
for a charge in external field. It will require, however, quite tedious calcula-
tions. Therefore, we choose another way, somewhat more simple and much
more instructive.

First, we transform Eq. (1) from the comoving inertial frame, where the
particle is at rest, into the laboratory one. The magnetic field B′ in the rest
frame is expressed via the electric and magnetic fields E and B given in the
laboratory frame, as follows:

B′ = γB − γ2

γ + 1
v(vB)− γv ×E .
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This expression can be easily checked by comparing it component by com-
ponent with the transformation of magnetic field for two cases: when this
field is parallel to the velocity and orthogonal to it, respectively. Then
one should take into account that the frequency in the laboratory time t is
γ times smaller than the frequency in the proper time τ (indeed, d/dt =
dτ/dt · d/dτ = γ−1d/dτ). Found in this way contribution to the precession
frequency is

ωg = − eg

2m

[

B − γ

γ + 1
v(vB)− v ×E

]

.

However it is clear from Eq. (7) that spin precesses even if g = 0. To
elucidate the origin of this effect, the so-called Thomas precession [17], we
consider two successive Lorentz transformations: at first from the laboratory
frame S into the frame S′ that moves with the velocity v with respect to
S, and then from S′ into the frame S′′ that moves with respect to S′ with
the infinitesimal velocity dv. Let us recall in this connection the following
fact related to usual three-dimensional rotations: the result of two successive
rotations with respect to noncollinear axes n1 and n2 contains in particular
a rotation around the axis directed along their vector product n1×n2. Now
it is only natural to assume that the result of the above successive Lorentz
transformations will contain in particular a usual rotation around the axis
directed along dv × v. In result, spin in the rest frame will rotate in the
opposite direction by an angle which we denote by κ[dv×v]. Here κ is some
numerical factor to be determined below. It depends generally speaking on
the particle energy.

This is in fact the Thomas precession. Its frequency in the proper time
τ is

ω′
T = κ[dv/dτ × v] = κ

e

m
[E′ × v] .

Now we transform the electric field E′ from the proper frame into the lab-
oratory one, as it was done above for the magnetic field B′, and go over
also from the proper time τ to t. In result, the frequency of the Thomas
precession in the laboratory frame is

ωT = κ
e

m

[(

E− γ

γ + 1
v(vE) + v ×B

)

× v

]

= −κ
e

m

[

v ×E − v2B + v(vB)
]

.

To find the coefficient κ, we recall that in a magnetic field, for g = 2 the
projection of spin onto the velocity is conserved. In other words, in this case
the total frequency of the spin precession ω = ωg + ωT coincides with the
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frequency of the velocity precession which is well known to be

ωv = − e

mγ
B .

From this we find easily that κ = γ/(γ+1). Correspondingly, the relativistic
equation of motion for the three-dimensional vector of spin s in external
electromagnetic field is

ds

dt
= (ωg + ωT)× s =

e

2m

{(

g − 2 +
2

γ

)

[s×B]

−(g − 2)
γ

γ + 1
[s× v](vB) −

(

g − 2γ

γ + 1

)

[

s× [v ×E]
]

}

. (8)

2.3. Relativistic spin Hamiltonian

The relativistic Hamiltonian for the interaction of the three-dimensional
vector of spin with external electromagnetic field is written in the usual
form:

H = ωs . (9)

Not only does it generate via the standard relation

ds

dt
=
i

~
[H, s] (10)

Eq. (8). For instance, it is easy to obtain with this Hamiltonian equations
of motion of the quadrupole moment of a relativistic particle in electric and
magnetic fields, neglecting the field gradients. In the particle rest frame, the
operator of its quadrupole moment is

qmn =
3q

2s(2s − 1)

[

smsn + snsm −
2

3
s(s+ 1)δmn

]

,

here the structure in square brackets guarantees the symmetry and vanishing
trace of this operator, qmn = qnm , qmm = 0; the overall factor at the square
brackets corresponds to the normalization condition qzz = q for sz = s. To
calculate the commutator in the corresponding equation

dqmn

dt
=
i

~
[ωksk, qmn] , (11)

is an elementary problem.
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Moreover, Hamiltonian (9) is effective for the solution of various other
physical problems, from the single-photon radiative transition between
atomic s-levels to the low-energy theorems for Compton scattering. So,
the validity of this Hamiltonian is beyond any doubts.

In particular, interaction (9) can be effectively used to derive the addi-
tional spin-dependent force acting upon a charged particle in an external
electromagnetic field [18]. However, since ω depends directly on the particle
velocity v (but not on its momentum p), it is somewhat more convenient to
employ here the Lagrangian (but not Hamiltonian) formalism with

L = −ωs . (12)

We will come back to the spin-dependent forces later.

3. Spin precession in gravitational field

In this section we present a simple and general derivation of the equa-
tions of the spin precession in a gravitational field (restricting to first order in
spin), based on a remarkable analogy between gravitational and electromag-
netic fields. Due to this correspondence, the formulae of the previous section
are naturally adapted for the case of an external gravitational field. In this
way we easily reproduce and generalize known results for gravitational spin
effects.

3.1. General relations

It follows from the angular momentum conservation in flat space-time
taken together with the equivalence principle that the 4-vector of spin Sµ is
parallel transported along the particle world-line. The parallel transport of
a vector along a geodesic xµ(τ) means that its covariant derivative vanishes:

DSµ

Dτ
= 0 . (13)

We will use the tetrad formalism natural for the description of spin. The
tetrad components of spin

Sa = Sµeaµ

(by the first letters of the Latin alphabet, a, b, c, d, we label here and below
four-dimensional tetrad indices) behave as vectors under Lorentz transfor-
mations of the locally inertial frame. However, they do not change under
generally covariant transformations xµ = fµ(x′). In other words, the four
components Sa are world scalars. Therefore, in virtue of relation (13), the
equations for them appear as follows:

dSa

dτ
=
DSa

Dτ
= Sµeaµ;νu

ν = ηabγbcdu
dSc . (14)
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The covariant derivative of a tetrad is by definition

eaµ;ν = ∂νe
a
µ − Γκ

µνe
a
κ
,

and the quantity
γabc = eaµ;νe

µ
b e

ν
c (15)

is the Ricci rotation coefficient. By means of covariant differentiation of the
identity eaµe

µ
b = ηab, one can easily demonstrate that these coefficients are

antisymmetric in the first pair of indices:

γabc = −γbac . (16)

Of course, the equations for the tetrad components of a 4-velocity look
exactly in the same way as those for spin:

dua

dτ
= ηabγbcdu

duc . (17)

The meaning of Eqs. (14) and (17) is clear: the tetrad components of
both vectors vary in the same way since their variation is due only to the
rotation of the local Lorentz frame.

There is a remarkable similarity between the discussed problem and the
special case of g = 2 in electrodynamics. According to Eqs. (7) and (6), the
four-dimensional spin and four-dimensional velocity of a charged particle
with the gyromagnetic ratio g = 2 precess with the same angular velocity:

dSa

dτ
=

e

m
FabS

b ,
dua

dτ
=

e

m
Fabu

b .

In other words, the obvious correspondence takes place:

e

m
Fab ←→ γabcu

c. (18)

It allows us to derive the precession frequency ω of a three-dimensional
vector of spin s in an external gravitational field from expression (8) by
means of the simple substitution

e

m
Bi −→ −

1

2
εiklγklcu

c ,
e

m
Ei −→ γ0icu

c (19)

(here again, it is just the velocity, a parameter of the local Lorentz group,
that enters these relations, but not the canonical momentum). Thus, the
precession frequency is

ωi = εikl

(

1

2
γklc +

uk

u0 + 1
γ0lc

)

uc

u0
w

. (20)
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The factor 1/u0
w in expression (20) is due to the transition in the left-hand

side of Eq. (14) to differentiating over the world time t:

d

dτ
=
dt

dτ

d

dt
= u0

w

d

dt
.

We supply here u0
w with the subscript w to indicate that this is the world,

but not the tetrad, component of 4-velocity. All other indices in (20) are
tetrad ones, c = 0, 1, 2, 3, i, k, l = 1, 2, 3.

Naturally, the relativistic Hamiltonian for the interaction of the three-
dimensional vector of spin with external gravitational field is exactly of the
same form (9), as that in the electromagnetic case. Here, of course, the
precession frequency ω is given by formula (20).

As to the limits of applicability of the presented equations, which describe
the spin precession in an external gravitational field, they are quite analogous
to those pointed out in Section 2.1 for the case of an electromagnetic field.

However, in some respect the spin interaction with a gravitational field
differs essentially from that with an electromagnetic field. In the case of
an electromagnetic field, the interaction depends, generally speaking, on
a free phenomenological parameter, g-factor. Moreover, if one allows for the
violation of invariance both under the reflection of space coordinates and
under time reversal, one more parameter arises in the case of electromag-
netic interaction, the value of the electric dipole moment of the particle.
The point is that both magnetic and electric dipole moments interact with
the electromagnetic field strength, so that this interaction is gauge-invariant
for any value of these moments. Only the spin-independent interaction with
the electromagnetic vector potential is fixed by the charge conservation and
gauge invariance. On the contrary, the Ricci rotation coefficients γabc en-
tering the gravitational first-order spin interaction (14), as distinct from the
Riemann tensor, are noncovariant. Therefore, the discussed interaction of
spin with gravitational field is fixed in unique way by the law of angular mo-
mentum conservation in flat space-time taken together with the equivalence
principle, and thus it contains no free parameters [19].

On the other hand, it is no surprise that the precession frequency ω

depends not on the Riemann tensor, but on the rotation coefficients. Of
course, this frequency should not be a tensor: it is sufficient to recall that
a spin, which is at rest in an inertial reference frame, precesses in a rotating
one.

3.2. Spin-orbit interaction. Weak field

One can check easily that in the weak-field approximation where

gµν = ηµν + hµν , |hµν | ≪ 1 ,



Spinning Relativistic Particles in External Fields 207

there is no difference between the tetrad and world indices in eaµ, and the
tetrad appears as follows:

eµν = ηµν + ẽµν , |ẽµν | ≪ 1 .

Relation between the tetrads and metric

eaµebνη
ab = gµν

in the weak-field approximation reduces to

ẽµν + ẽνµ = hµν .

Under the demand that tetrads are expressed via metric only, one arrives at
the so-called symmetric gauge for the tetrads, where

ẽµν = 1
2hµν .

Then in the weak-field approximation the Ricci coefficients are:

γabc = 1
2(hbc,a − hac,b) . (21)

Now, with relations (20) and (21) one can solve, for instance, in an
elementary way the problem of the gravitational spin–orbit interaction for
arbitrary particle velocities. In the centrally symmetric field created by
a mass M , the metric is

h00 = −rg
r

= −2kM

r
, hmn = −rg

r
δmn = −2kM

r
δmn . (22)

Here the nonvanishing Ricci coefficients are

γijk =
kM

r3
(δjkri − δikrj) , γ0i0 = −kM

r3
ri . (23)

Plugging these expressions into formula (20) yields the following result for
the precession frequency:

ωls =
2γ + 1

γ + 1

kM

r3
v × r . (24)

The combination of a high velocity for a spinning particle with a weak grav-
itational field refers obviously to a scattering problem. Another possible ap-
plication is to a spinning particle bound by other forces, for instance, by elec-
tromagnetic ones, when we are looking for the correction to the precession
frequency due to the gravitational interaction.
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In the limit of low velocities, γ → 1, formula (24) goes over into the
classical result [20]

ωls =
3

2

kM

r3
v × r , (25)

with the gravitational spin–orbit potential1

Uls(r) =
3

2

kM

r3
[v × r]s . (26)

3.3. Spin-orbit interaction. Schwarzschild field

We consider now the spin precession in the Schwarzschild field beyond
the weak-field approximation (though neglecting the spin influence on the
trajectory). The 3-dimensional components of the Schwarzschild metric can
be conveniently written as

gmn = −
(

δmn −
rmrn
r2

)

− rmrn
r2

1

1− rg/r
= −δ⊥mn − nmnn

1

1− rg/r
. (27)

Nonvanishing tetrads are chosen as follows:

e
(0)
0 =

√

1− rg/r , e(k)
m = δ⊥km + nknm

1
√

1− rg/r
, (28)

in this subsection the tetrad indices are singled out by brackets. Now the
nonvanishing Ricci coefficients (here their last indices are world ones) are

γ(0)(i)0 = −kM
r3

ri , γ(i)(j)k =
1−

√

1− rg/r
r2

(δjkri − δikrj) . (29)

At last, the precession frequency in this case is

ω = −L
rg

2mr3

{

2

u0 + u0
√

1− rg/r
+

1

1 + u0
√

1− rg/r

}

. (30)

Here m and L are the particle mass and orbital angular momentum, respec-
tively,

u0 =
dt

dτ
=

{

1− rg/r − (nv)2(1− rg/r)−1 − (v⊥)2
}−1/2

.

1 It is curious that this result by Fokker for the gravitational spin–orbit interaction
preceded by 5 years the corresponding one by Thomas for the electromagnetic case.
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Rather cumbersome general expression (30) simplifies for a circular orbit.
Here

u0 =

(

1− 3kM

r

)−1/2

, L = mr

(

kM

r

)1/2 (

1− 3kM

r

)−1/2

,

so that

ω =
(kM)1/2

r3/2

[

1−
(

1− 3kM

r

)1/2
]

. (31)

The general case of spin precession in the Schwarzschild field was consid-
ered in [21]. Our expression (31) agrees with the corresponding result of [21]
(therein the precession is considered with respect to the proper time τ , but
not with respect to t).

4. Covariant and noncovariant description

of spin-dependent forces

4.1. Problem with covariant formalism. Simple example

The difficulty with the covariant description of spin-dependent forces
arises already for the electromagnetic interaction. To see what we are talking
about, let us come back to Lagrangian (12). In the c−2 approximation it
generates the spin-dependent force

fm =
eg

2m
sB,m +

e(g − 1)

2m

(

d

dt
[E × s],m − s[v ×E,m ]

)

, (32)

acting on the particle (here and below in this subsection a subscript with
a comma denotes a partial derivative).

Let us try to construct a covariant expression for the spin-dependent
force acting on the particle, which would reproduce in the same c−2 approx-
imation force (32). Such covariant correction fµ to the Lorentz force eFµνuν

should be linear in the tensor of spin Sµν and in the gradient of the ten-
sor of electromagnetic field Fµν,λ, it may depend also on the 4-velocity uµ.
Since uµuµ = 1, this correction must satisfy the condition uµf

µ = 0. From
the mentioned tensors one can construct only two independent structures
meeting the last condition. The first one,

ηµκFνλ,κS
νλ − Fλν,κu

κSλνuµ, (33)

reduces in the c−2 approximation to

2s(B,m−[v ×E,m ]), (34)
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and the second one,
uλFλν,κu

κSνµ, (35)

reduces to
d

dt
[s×E],m . (36)

Let us note that possible structures with the contraction Fνκ,λS
κλ reduce

to (33) and (35), due to the Maxwell equations and the antisymmetry of
Sκλ.

Certainly, no linear combination of (34) and (36) can reproduce the cor-
rect expression (32) for the spin-dependent force.

But why is it that the correct (in the c−2 approximation) formula (32)
cannot be obtained from a covariant expression for the force? Obviously, one
can easily reproduce by a linear combination of (34) and (36) those terms
in (32) which are proportional to g. In other words, there is no problem
to present in a covariant form the terms which describe, so to say, direct
interaction of a magnetic moment with external fields. It is the terms in (32)
independent of g and corresponding to the Thomas precession, which cannot
be written covariantly.

Of course, the noncovariance of equations by itself does not mean that
physical observables have wrong transformation properties. It is sufficient
to recall in this connection electrodynamics in the Coulomb gauge.

4.2. What is the coordinate of spinning particle?

The covariant formalism can be reconciled with the correct results if the
coordinate x entering the covariant equation is related to the usual one r in
the c−2 approximation as follows:

x = r +
1

2m
s× v . (37)

The generalization of this substitution to the case of arbitrary velocities is [5]

x = r +
γ

m(γ + 1)
s× v , γ =

1√
1− v2

. (38)

Obviously, after this velocity-dependent substitution, the Lagrangian de-
pends explicitly on the acceleration which in general results in spurious,
nonphysical solutions.

Since relations (37), (38) are valid for a free spinning particle as well,
their origin can be elucidated with a simple example of a free particle of
spin 1/2. Here, instead of the Dirac representation with the Hamiltonian of
the standard form

H = αp + βm ,
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it is convenient to use the Foldy–Wouthuysen (FW) representation. In it
the Hamiltonian is

HFW = βεp , εp =
√

p2 +m2 ,

and the 4-component wave functions ψ± of the states of positive and negative
energies reduce in fact to the 2-component spinors φ±:

ψ+ =

(

φ+

0

)

, ψ− =

(

0

φ−

)

.

Obviously, in this representation the operator of coordinate r̂ defined by the
usual relation

r̂ψ(r) = rψ(r) , (39)

is just r.
The transition from the exact Dirac equation in an external field to

its approximate form containing only the first-order correction in c−2, is
performed just by means of the FW transformation. Thus, in the resulting
c−2 Hamiltonian the coordinate of a spinning electron is the same r as in
the completely nonrelativistic case2.

One more limiting case, which is of a special interest to us, is a classical
spinning particle. Such a particle is in fact a well-localized wave packet
constructed from positive-energy states, i.e., it is naturally described in the
FW representation. Therefore, it is just r which it is natural to consider as
the coordinate of a relativistic spinning particle.

A certain subtlety here is that in the Dirac representation the operator
r̂ is nondiagonal. However, the operator equations of motion certainly have
the same form both in the Dirac and Foldy–Wouthuysen representations.
Correspondingly, the semiclassical approximation to both is the same. In
particular, the time derivatives in the left-hand side of classical equations of
motion are taken of the same coordinate r, which serves as an argument of
the fields in the right-hand side of these equations.

As to the covariant operator x̂, it has the simplest form in the Dirac
representation:

x̂D =

√

ε

m
βrD

√

ε

m
, (40)

where r̂D is the operator acting on the wave function in the Dirac repre-
sentation according to the rule (39). The covariance of the matrix element

ψ†x̂ψ is obvious: the matrix β transforms ψ† into ψ̄, and the factors
√

ε/m
are needed for the covariant normalization of the wave functions.

2 This is why nobody makes substitution (37) in the Coulomb potential when treating
the spin–orbit interaction in the hydrogen atom.
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Let us rewrite the operator x̂ in the FW representation. The matrix U
of the FW transformation is

U =
m+ ε− βαp
√

2ε(m + ε)
. (41)

The calculation, which is conveniently performed in the momentum repre-
sentation where rD = i∇p, results in the following expression:

x̂FW = U †x̂DU = β

(

r +
1

m(m+ ε)
s× p

)

− 1

2m
[(αp)r̂ + r̂(αp)] . (42)

Here

s =
1

2

(

σ 0
0 σ

)

(43)

is the relativistic operator of spin. Let us note that different components of
the relativistic coordinate operator (42) do not commute. If we confine to
the space of the positive-energy states, then we can put in (42) β = 1 and
drop the terms with α. In this way we arrive at expression (38).

4.3. Back to gravitational interaction

Thus, there is however a serious problem with the covariant formulation
of the equations of motion of a spinning relativistic particle. This equation,
for instance, in the gravitational field,

D

Dτ

(

muµ − Sµν
Duν

Dτ

)

= −1

2
Rµνρσu

νSρσ , (44)

contains the third time-derivative. As long as the term

− D

Dτ

(

Sµν
Duν

Dτ

)

,

with the third time-derivative, is treated perturbatively, no special prob-
lem arises with it by itself. However, the inherent shortcoming of Eq. (44)
(pointed out above for the corresponding electromagnetic equation in the
c−2 approximation) is that beyond the perturbation theory it evidently has
spurious, nonphysical solutions.

But let us confine in (44) to the leading in spin approximation:

Duµ

Dτ
= − 1

2m
Rµνρσu

νSρσ . (45)
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We note that the right-hand side of this equation is the only covariant struc-
ture possible here (up to a numerical factor). For the nonrelativistic motion
in the gravitational field created by a mass M , Eq. (45) reduces to

ẍ =−kM
x3

x+3
kM

mx3
[v × s−(nv)n×s−2n(n[v×s])] , n =

x

x
. (46)

However, the equation of motion that follows from the Lagrangian with
potential (26) is somewhat different:

r̈ =−kM
r3

r+3
kM

mr3

[

v×s− 3

2
(nv)n×s− 3

2
n(n[v×s])

]

, n =
r

r
. (47)

The reason of the disagreement between (47) and (46) is that they refer to
the coordinates r and x defined differently (see (37)).

This discrepancy was pointed out long ago in [22] where the classical
result (26) was derived from the scattering amplitude for the Dirac particle
in the gravitational field.

Quite typical explanation of the discrepancy was: “The quantum field
theory of the spin-1/2 particle from which the classical result was derived
does not have any spin supplementary condition (uµSµ = 0 or uµSµν = 0).
This is because field theories deal with point particles and not with extended
bodies.” In fact, first of all, spin in the Dirac theory certainly satisfies the
mentioned constraint (in the sense of expectation values). On the other
hand, is the proton in a gravitational field a point particle or an extended
body? The deuteron? The uranium nucleus? Obviously, an extended body
can be treated as a point particle, as long as we do not go into details of
its structure and as long as we do not consider its internal excitations. This
fact should be emphasized since up to now one may hear utterances similar
to the above one on “point particles and extended bodies”, even from some
well-known theorists.
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