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In 1937, Myron Mathisson published in this journal a paper entitled
A New Mechanics of Material Systems. This showed for the first time how
an extended body in general relativity could be described by an infinite set
of multipole moments and how approximate equations of motion could be
obtained by retaining only a finite number of these moments. He obtained
such equations of motion when only the monopole and dipole moments are
retained and also partial results when the quadrupole moment is also re-
tained. This was the start of a programme of work that he continued until
his death in 1940. This paper identifies the aims of this work and the obsta-
cles that still needed to be overcome. It outlines subsequent developments
by the present author and others that have continued this programme and
brought it to fulfillment.

PACS numbers: 01.30.Cc, 04.20.–q, 04.25.–g, 95.30.Sf

1. Introduction

It gives me great pleasure to present a paper at this meeting on the life
and work of Myron Mathisson. Although he died in the year that I was
born, through his papers he has probably had a greater influence on my
work than any living scientist.

I first came upon his work as a graduate student working on equations
of motion in general relativity. I had come to this topic through the papers
of Papapetrou [1] and Corinaldesi and Papapetrou [2] published together
in 1951 under the title Spinning Test-Particles in General Relativity, a test
particle being a body whose mass is, in some appropriate sense, negligi-
ble. Papapetrou considered a test particle sufficiently small that only the
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monopole and dipole moments of its energy-momentum tensor Tαβ need be
considered, a so-called pole–dipole particle. He showed that for the purpose
of studying its motion, the monopole moment of such a particle could be
described by a scalar M and the dipole moment by an antisymmetric tensor
Sαβ , these representing its mass and spin, i.e. angular momentum. These
were shown to satisfy the equations

δ

ds

(
Mvα + vβ

δSαβ

ds

)
= 1

2vβSγδRα
·βγδ (1)

and
δSαβ

ds
+ vαvγ

δSβγ

ds
− vβvγ

δSαγ

ds
= 0 . (2)

Here s is the proper time along the world line of the body, vα ≡ dxα/ds
is its four-velocity, δ/ds denotes the absolute derivative with respect to s
and Rα

·βγδ is the curvature tensor of the spacetime. The signature of the
spacetime metric is taken as −2, so that vαvα = 1.

The treatment by Papapetrou was extremely non-covariant. The quan-
tities M and Sαβ were constructed from non-covariant parts and had to be
proved to be a scalar and tensor respectively. Similarly the equations as
originally derived had to be manipulated into the above covariant forms. To
my mind these aspects were unsatisfactory. Indeed it was this unsatisfactory
nature of the derivation that led me to study the problem further. But the
final equations were covariant and, so it seemed, new. Papapetrou pointed
out that in a flat spacetime they agreed with the results of a study of the
pole–dipole particle in special relativity by Mathisson [3] in 1937.

In due course I decided, for completeness, to look up the 1937 paper of
Mathisson. I discovered to my astonishment that not only was the treatment
actually in general relativity but it was also covariant. Mathisson derived
essentially the same equations of motion as Papapetrou, including the spin-
curvature interaction term that is arguably the most important discovery
of the work. Indeed, he went further by considering the quadrupole terms.
He showed that the equation of motion for the spin then gains additional
terms representing a torque exerted by the gravitational field, expressed in
terms of the quadrupole moment and the curvature tensor. On top of all
this, the title of the paper was, in translation from its original German,
A New Mechanics of Material Systems, a far more all-embracing and inspir-
ing title than that of Papapetrou.

The year was 1964. I felt compelled to find out what further work
Mathisson had done on this “new mechanics”. I discovered, to my great
sadness, that he had died in 1940 while still working on this topic. I decided
to continue Mathisson’s programme of work as I understood it to be. This
came to dominate the next ten years of my life.
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2. Mathisson’s multipole moments

To see the aims of Mathisson’s work we need to look at his character-
isation of the multipole moments of a body. In contrast to Papapetrou,
Mathisson treated an extended body and defined an infinite set of covariant
multipole moments for it. We consider a body occupying a world tube of
finite spatial extent and choose a timelike world line L within this world
tube. For present purposes L is otherwise arbitrary, but at a later stage we
will wish to impose conditions that restrict it to be a suitably defined mass
centre. Precisely what conditions are best suited for this is in fact one of
the big questions of this subject.

Mathisson showed that there exists an infinite set of multipole moments
mαβ , mαβγ , mαβγδ,. . . such that

∫
TαβϕαβDx =

∫

L

(
mαβϕαβ +mγαβ∇γϕαβ +

1

2!
mγδαβ∇γδϕαβ +· · ·

)
ds (3)

for all symmetric tensor fields ϕαβ of compact support. Here Tαβ is the
energy-momentum tensor of the body, which is taken to be symmetric. The
integral on the left extends over all space, with Dx ≡ √−g d4x being the
spacetime volume element. That on the right is over the world line L on
which s is proper time, ∇α denotes covariant differentiation and ∇αβ ≡
∇α∇β. The moments are not uniquely determined by this but they become
so if we require in addition that

(a) they are symmetric on their last two indices, i.e. those contracted with
ϕαβ , and separately are symmetric on all their other indices, i.e. those
contracted with the derivative operators, and

(b) they are orthogonal to the four-velocity vα ≡ dxα/ds of L on all indices
except the last two.

The infinite set of these moments was called by Mathisson the gravitational

skeleton of the body, or in a later paper its dynamical skeleton.

3. The variational equation of dynamics

If we take
ϕαβ = ∇(αωβ) , (4)

where ωα is an arbitrary vector field of compact support and round brack-
ets around indices denote symmetrisation then the left side of the defining
equation (3) vanishes as a consequence of the conservation equation

∇βTαβ = 0 . (5)
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The moments therefore satisfy

∫

L

(
mαβϕαβ + mγαβ∇γϕαβ +

1

2!
mγδαβ∇γδϕαβ + · · ·

)
ds = 0 (6)

for all such ϕαβ . Mathisson called this the variational equation of dynam-

ics, the variation in question being the ability to vary ωα arbitrarily. It is
a constraint on the gravitational skeleton and is the central equation of his
programme of work.

Mathisson’s “new mechanics” consists of determining the consequences of
this variational equation, so providing a description of an extended body and
its motion in terms of parameters similar to those of Newtonian rigid body
mechanics, rather than the description provided by the energy-momentum
tensor which corresponds more to that of Newtonian continuum mechanics.
However, he was only able to work with this equation by truncating the
series after the first few terms, the justification being that successively higher
moments should have less and less effect on the motion if the gravitational
field varies only slowly across the body. The truncated equation then leads
both to restrictions on the form of the moment tensors and to differential
equations of motion that they must satisfy.

When only the first two moments are retained, these restrictions imply
that these moments are determined by a scalar M and an antisymmetric
tensor Sαβ such that

mαβ = p(αvβ) +
δ

ds

(
q(αvβ)

)
(7)

and
mγαβ = Sγ(αvβ) + vγq(αvβ) , (8)

where

pα = Mvα + vβ
δSαβ

ds
(9)

and
qα = Sαβvβ . (10)

These satisfy the same equations of motion (1) and (2) as were later derived
by Papapetrou. For reasons described below, Mathisson derived these results
only in the special case qα = 0 but the general case given here gives greater
insight into the structure of the results.

With use of the auxiliary vector pα the equations (1) and (2) can be
written in the form

δpα

ds
=

1

2
vβSγδRα

·βγδ ,
δSαβ

ds
= 2p[αvβ] , (11)
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where square brackets around indices denote antisymmetrisation. Indeed the
equations in this form imply that pα has the form given in (9), where M is
now defined by M = pαvα, so that alternatively pα and Sαβ can be regarded
as giving the primary description with M being the auxiliary variable. This
is perhaps a more elegant view of the results.

If the expressions (7) and (8) are put back into the defining relation (3)
for the moments, the terms involving qα combine into a single derivative
that integrates to zero. That defining equation is therefore unaffected if
expressions (7) and (8) are replaced by the simpler ones

mαβ = p(αvβ) and mγαβ = Sγ(αvβ) . (12)

These are the forms taken by (7) and (8) when qα = 0 but in the case of
general qα they no longer satisfy the orthogonality condition (b). This is
a first indication that (b) is not the most appropriate addition to condition
(a) to ensure uniqueness of the moments. We shall see below that modifica-
tion of this orthogonality condition is one of the key steps towards solving
the variational equation exactly.

4. Centre of mass

In their component form, there are ten independent variables in equa-
tions (1) and (2), namely M , three independent components of the unit
vector vα and six independent components of the antisymmetric tensor Sαβ.
There are, however, only seven independent equations since the inner prod-
uct of (2) with vβ is satisfied identically. These equations are therefore not
determinate, which is simply a reflection of the fact that for a given body,
the world line L can be chosen arbitrarily.

Mathisson wished to impose further conditions to select a specific L that
could be considered as the world line of the centre of mass of the body. By
examining the form taken by the moments in special relativity, Mathisson
showed that the qα defined by (10) could be interpreted as the static mass
dipole moment of the body and that L could be chosen so that qα = 0
along it. In Newtonian mechanics the static mass dipole moment vanishes
when taken about the centre of mass. He, therefore, took

vβSαβ = 0 (13)

as the condition to characterise L as the world line of the centre of mass in
general relativity.

With this condition the equations (1) and (2) become determinate. How-
ever, they also become third order differential equations for xα(s), so that
initial values of position, velocity and acceleration are all needed in order to
determine a unique solution.
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This raises the question of whether this is a real physical phenomenon
or an artefact of the condition (13). Unfortunately this question cannot be
answered within the framework of the pole–dipole approximation, as there
can only be one choice of L for which the neglect of quadrupole and higher
moments can be valid. Indeed, this neglect can only be truly justified in the
limiting case of a point test particle, when L is taken as the world line of the
particle itself. Whether or not (13) holds is then without doubt a question
about the physical properties of the particle. In this context (13), or any
alternative, is generally called a supplementary condition rather than a mass
centre definition.

As mentioned above, Mathisson imposed condition (13) before he ex-
ploited the variational equation, so that his equations of motion were only
derived for this special case. This is why Mathisson’s equations were said
above to be only essentially the same as those of Papapetrou. Papapetrou
did not impose this condition. He was aware of its difficulties but he offered
no alternative of general applicability.

A more detailed understanding came first from the situation in special
relativity, in which the alternative form (11) for the equations of motion
simplifies to

dpα

ds
= 0 ,

dSαβ

ds
= 2p[αvβ] . (14)

These equations were studied by Weyssenhoff and Raabe [4] in 1947, who
deduced them on very different grounds from those of Mathisson. They
considered a point particle with four-velocity vα that was endowed with an
internal angular momentum (spin) Sαβ satisfying (13). They accepted the
possibility that its four-momentum pα need not be parallel to vα. Then the
equations (14) represent conservation of momentum and of total (orbital
plus spin) angular momentum. They defined its mass by M = pαvα and
deduced (9). Since pα is now constant in time, a Lorentz frame can be
chosen in which the spatial components of pα are zero. They showed that
in this frame the general solution of the equations is uniform motion in
a circle of arbitrary radius r at an angular velocity determined by r and the
spin/mass ratio S/M where S2 = 1

2SαβSαβ. These motions were interpreted
as real physical motions for such a particle.

The same equations were studied in the context of an extended body
in special relativity by Møller [5] in 1949. He showed that for an arbitrary
world line L the equations (14) are satisfied exactly by the momentum pα,
and angular momentum Sαβ about a point z(s) of L, defined as integrals of
Tαβ by

pα =

∫

Σ

Tαβ dΣβ (15)
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and

Sαβ = 2

∫

Σ

X [αT β]γ dΣγ , (16)

where Xα = xα − zα(s). The integration is over any cross-section of the
body by a hypersurface Σ, since the symmetry of Tαβ together with the
conservation law (5) ensures that for fixed s these integrals are independent
of the choice of Σ. In this situation, any condition that restricts L is merely
one of convention. If (13) is adopted then the various circular motions
permitted by the equations are merely different choices of L. Møller called
the points on these lines pseudocentres of gravity, so that what one is doing
in prescribing an initial acceleration for a solution of the equations is simply
picking out which pseudocentre of gravity is to be described. The condition
(13) represents the vanishing of the mixed components Sα4 for α = 1, 2, 3
in the frame in which the 3-velocity is zero. Møller pointed out that a unique
L can be determined by requiring these components to vanish instead in the
zero 3-momentum frame, which is uniquely determined since pα is constant.
He called this the true centre of gravity. It is characterised in a general frame
by

pβSαβ = 0 . (17)

In 1959 Tulczyjew [6] revisited the pole–dipole equations in general rel-
ativity, considered as approximations for an extended body. Following the
results of Weyssenhoff and Raabe, he identified the pα of (9) as the momen-
tum of the body in this approximation. He rejected (13) as a mass centre
definition due to its non-uniqueness and observed that in special relativity
(17) does determine a unique world line. With this as motivation, he then
adopted (17) as the condition to determine the centre of mass in general
relativity “owing to the lack of another definition”. The combination of (11)
with (17) provides equations for xα(s) ∈ L that are only of second order, so
it is no longer possible to prescribe an initial acceleration.

This was the first definition of the mass centre of an extended body in
general relativity that avoided the problem of non-uniqueness. In contrast
to the situation in special relativity, however, where (15) and (16) provide
well defined expressions for pα and Sαβ in terms of Tαβ, the momentum
and spin that occur in the Tulczyjew condition are defined only within the
pole–dipole approximation. This was overcome by the present author [7] in
1964, where explicit expressions were given for pα and Sαβ as integrals of
Tαβ that were generalisations of (15) and (16) and were shown to satisfy
equations (11) in the pole–dipole approximation. Taken with the Tulczyjew
condition (17) this provided the first definition of the mass centre in general
relativity that was not dependent on an approximation procedure.
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Even this is still unsatisfactory, however. Any change to the pα and
Sαβ defined there that leaves them unaltered in the pole–dipole approxima-
tion would affect the definition of the mass centre but would not affect the
equations of motion to that approximation. It is therefore only one of an
infinite set of possible definitions that lead to distinct world lines but which
agree with one another in the limiting case of flat spacetime. A satisfactory
choice from this set can only be made on physical grounds when equations
of motion are available to an arbitrarily high order of multipole moments.

The centre of mass problem is therefore intimately bound up with Math-
isson’s programme of work on equations of motion.

5. The problems ahead

To see the problems facing the Mathisson programme, it is necessary
to form an overall view. Mathisson’s approach to equations of motion falls
into two distinct parts. The first part is to show that moments exist that
satisfy the defining equation and any supplementary conditions such as (a)
and (b) above. The second part is to exploit the consequences of the varia-
tional equation. In his 1937 paper his treatment of the variational equation
was approximate, in that it required a truncation. In contrast his existence
proof for the moments dealt with the infinite set of moments without ap-
proximation. However, it left the uniqueness question unanswered, as the
orthogonality condition (b) was imposed only on the moments retained in
the truncated variational equation.

An improved and more detailed proof was given by Bielecki, Mathisson
and Weyssenhoff [8] in 1939. This imposed both (a) and (b) from the outset
and proved both the existence and uniqueness of the moments. Or at least
it did so subject to one explicit proviso, namely that infinite series converge
and functions are analytic to whatever extent is required.

This proviso is important, as the proof requires the moments at any point
z ∈ L to be determined by the value of Tαβ on a hypersurface through z that
has some freedom in its specification. This implies some form of analyticity
of Tαβ that is not physically reasonable. It is permissible to require ϕαβ

to be analytic as this is just an auxiliary field introduced for convenience,
but the analyticity must not apply also to Tαβ. The problem originates
not in the proof but in the moment defining equation itself. Mathisson [9]
studied this issue again in 1940, this time in the simpler case of special
relativity, in a paper simply titled The Variational Equation of Relativistic

Dynamics. He was there able to give expressions for the moments as explicit
integrals of Tαβ over hyperplanes orthogonal to the chosen world line L.
These were shown to satisfy the defining equations but they were not de-
duced from it. Indeed, the flawed nature of the defining equations makes
this task impossible.
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These problems suggest that it may be preferable to abandon the
Mathisson approach and instead seek a covariant version of the Papapetrou
method. Seek a set of multipole moments defined from the outset as explicit
tensor-valued integrals over cross-sections of the body and study their prop-
erties directly. This would by-pass the difficulties associated with Mathisson’s
moment defining equation and leave only a study of the consequences for
these moments of the energy-momentum conservation equation. This study
would correspond to the solving of Mathisson’s variational equation. One
would expect to have to retain only the first few moments in this study, but
that would correspond to Mathisson’s need to truncate the variational equa-
tion. This approach was adopted in 1962 by Tulczyjew and Tulczyjew [10]
and in 1964, with different definitions, by the present author in [7]. But
once one sees how to construct such tensor-valued integrals it becomes clear
that there is an infinite number of possibilities to choose from, no one choice
being more natural, in some sense, than the rest.

Perhaps it does not matter which we choose, as the quantities such as
pα and Sαβ that appear in the final equations of motion are constructs from
these moments rather than being moment tensors themselves. But the goal
must be to avoid the need to neglect the higher moments, as this truncation
itself is fundamentally flawed. We have only to look at Papapetrou’s original
forms (1) and (2) for the equations of motion of a pole–dipole particle to
see that even in a flat spacetime the dipole construct enters the equation (1)
governing the monopole construct M and the velocity vα. If higher moments
were retained we would expect further contributions to this equation. We
have seen that pα provides a preferable description of the monopole structure
in that the spin Sαβ then only occurs in the monopole equation of motion
in combination with the curvature tensor. But what happens to this if we
retain higher moments? Equations of motion that include quadrupole terms
were obtained by Taub [11] in 1965 and Madore [12] in 1969. Both of these
resulted in an equation of motion for the momentum in which the quadrupole
moment, like the dipole moment Sαβ, interacts with an undifferentiated
curvature tensor. This conflicts with the justification offered for the neglect
of the higher moments, namely that they interact with successively higher
derivatives of the curvature tensor.

The quadrupole extensions of Taub and Madore were unsatisfactory also
for another reason. In addition to the neglect of octopole and higher mo-
ments that is in the nature of this approximation, they both had to neglect
certain of the components of the quadrupole moment on the grounds of
smallness. So even a complete treatment of the quadrupole case was prov-
ing elusive.

So how might we continue to higher orders and avoid truncation. We
can hope that by a judicious choice of our original moment definitions the
consequences of the energy-momentum conservation equation might be man-
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ageable, and indeed even sufficiently systematic that we can handle them to
all orders. But we need a guide to help towards this judicious choice. There
really is only one guide available. It is to return to Mathisson’s approach,
with its implicit definition of the moments through a defining equation, and
to use the variational equation as our guide. That equation has a deceptive
simplicity. Our goal is to find our way through that deception.

So in the 1960’s I was led back to Mathisson’s new mechanics of 1937 to
provide the way forward. The aims were two-fold.

1. To remove all assumptions of convergence and analyticity from the
statement of the moment defining equation and its associated existence
and uniqueness proof.

2. To solve the variational equation exactly, and only then to truncate
the result to provide equations of motion to any desired order of ap-
proximation.

I regard my achievement of these two aims in [13–15] as the realisation of
Mathisson’s new mechanics.

Realisation of 1. led to explicit and unique expressions for the moment
tensors as integrals of Tαβ . Realisation of 2. led to unambiguous analogues
of pα and Sαβ that generalise (15) and (16) and have a natural identification
as the momentum and spin of the body. This enables a third aim to be added.

3. To show that the Tulczyjew condition (17) can be used to determine L
uniquely and that this L has properties which enable it to be identified
naturally as the centre of mass line in general relativity.

Through the work of Ehlers and Rudolph [16] and of Schattner [17,18], this
too has been achieved.

The following sections outline the means by which these aims have been
achieved.

6. Fourier transformation: special relativity

The first clue towards realising the aims of Mathisson’s new mechanics
can be found by considering the simpler environment of special relativity.
Consider a rectangular coordinate system so that the components gαβ of the
metric tensor are constant, but not necessarily diagonal. The coordinates
xα can then be treated as components of a position vector.

Mathisson’s defining equation (3) for the moments can be rewritten in
full as

∫
Tαβϕαβ Dx =

∫

L

∑ 1

n!
mδ···γαβ(s)∇δ···γϕαβ(z(s)) ds . (18)
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Here L is parameterised as zα(s), where now for generality s is not necessarily
proper time. Here and throughout, n is the number of indices in the set
marked with dots, in this case δ . . . γ, and we allow the possibilities n = 0
and n = 1. We seek to avoid the requirement for ϕαβ to be analytic. To do
so we introduce the Fourier transform ϕ̃αβ defined by

ϕ̃αβ(k) =

∫
ϕαβ(x) exp(i k · x)Dx , (19)

where k · x ≡ kαxα . For more complicated cases we shall also write the
Fourier transform ϕ̃αβ as F [ϕαβ ].

If we express ϕαβ in terms of ϕ̃αβ in (18), we get

∫
Tαβϕαβ Dx =

1

(2π)4

∫

L

ds
∑∫

Dk
(−i)n

n!
kδ · · · kγ

×mδ···γαβ(s)ϕ̃αβ(k) exp(−i k · z) . (20)

If we now exchange the order of the summation and the k-space integration
we get ∫

Tαβϕαβ Dx = Mαβ [Φαβ] , (21)

where

Mαβ [Φαβ] =
1

(2π)4

∫

L

ds

∫
Dk m̃αβ(s, k)Φ̃αβ(z(s), k) (22)

with

m̃αβ(s, k) =
∑ (−i)n

n!
kδ · · · kγmδ···γαβ(s) (23)

and
Φ̃αβ(z, k) = ϕ̃αβ(k) exp(−i k · z). (24)

Note that Φ̃αβ(z, k) is simply the Fourier transform of ϕαβ about z as origin.
In this form the moment defining equation no longer requires ϕαβ to be

analytic. We have, of course, achieved this by exchanging a summation and
an integration that cannot in general be validly exchanged. We adopt this
new form as an improved defining equation in special relativity.

7. Fourier transformation: general relativity

To extend this definition to a curved spacetime, note that since the
moments are tensors at z(s) ∈ L, kα must be considered as a vector at the
same point. This makes m̃αβ be a tensor field on the tangent space Tz(M)

to the spacetime manifold M at z(s), so Φ̃αβ must be likewise.
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With these interpretations, equations (21), (22) and (23) can be taken
over unchanged into a curved spacetime. We are left only with needing
a generalisation of (24). There is no problem in defining Fourier transforms

on Tz(M) since it is always a flat manifold. We can therefore take Φ̃αβ to
be the Fourier transform of a Φαβ that is also a tensor field on Tz(M) . This
leaves us simply to decide how Φαβ is to be defined in terms of ϕαβ .

When M is flat we have a natural identification of the manifold Tz(M)
with M , which is the underlying reason why (19) is meaningful in special
relativity. In a curved spacetime we relate the two manifolds by means of
the exponential map Expz : Tz(M) → M . If X ∈ Tz(M) and x = ExpzX
then the derivative map ((Expz)∗)X of Expz at X maps TX(Tz(M)) isomor-
phically onto Tz(M). This mapping between tangent spaces has a unique
extension to a mapping of the corresponding tensor algebras. We denote this
by replacing the ∗ by A (for Algebra) in the notation. By letting X vary we
get a map (Expz)A from tensor fields on Tz(M) to tensor fields on M . If we
have such a tensor field for each z, we can apply the corresponding map to
each of them to obtain a family of tensor fields on M parameterised by z, i.e.

a two-point function with scalar character at z and tensor character at the
second point x. We let ExpA denote this overall map and ExpA denote its
inverse. These can both be formalised as maps between appropriate vector
bundles.

We see that ExpA acts on two-point tensors with scalar character at one
point, say z. A special case of this is an ordinary tensor field treated as such
a two-point tensor that is independent of z. We can therefore take

Φαβ = ExpAϕαβ . (25)

For each z, this defines Φαβ as a tensor field on Tz(M).
If M is flat and we identify each of its tangent spaces with M itself then

this gives in any rectangular coordinate system on M that

Φαβ(z,X) = ϕαβ(x) , where X ≡ x − z . (26)

In the expression for X the points x, z ∈ M are being identified with their
position vectors relative to the coordinate origin, their difference being their
relative position vector considered as an element of Tz(M). If we take the
Fourier transform of this on Tz(M) we recover (24), which was our starting
point in special relativity.

Equations (21), (22) and (23), when taken with (25) instead of (24), serve
to define the infinite set of moments mαβ, mαβγ , mαβγδ, . . . equally well in
both special and general relativity in a manner that avoids the requirement
for ϕαβ to be analytic. We now adopt this as a new definition of the moments
in general relativity. We have seen that in special relativity it is effectively
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a transformation of Mathisson’s original definition (3). In general relativity,
however, there is no longer any sense in which it is a transformation of
Mathisson’s original equation. We are making a real change in the definition
of the moments in order to eliminate the analyticity requirement.

It should be noted that although there always exists a neighbourhood
Nz of the origin in Tz(M) that is mapped diffeomorphically by Expz onto
its image in M , in general Nz cannot be extended to the whole of Tz(M).
For simplicity the presentation in this paper will be written as if Nz can
be so extended, but the full derivations in [15] do not make this unrealistic
simplification.

8. The hypersurfaces of integration

This change to the moment definitions enables us to deduce that the
moments are expressible as integrals of Tαβ over a uniquely determined set
of hypersurfaces. We shall adopt additional conditions to ensure uniqueness
of the moments, as in section 2. For later convenience, however, we shall
make a slight generalisation of its condition (b) by replacing the four-velocity
vα by an arbitrary timelike field of unit vectors nα along L, so that

nδm
δ···γβα = 0 , for n ≥ 1 . (27)

Recall that n is the number of indices in the set marked with dots, so that
this applies to moments with three or more indices.

Choose a Minkowskian coordinate system on Tz(s)(M) such that nα 6= 0

only for α=4. Then (23) and (27) show that m̃αβ(s, k) is independent of k4.

Recall now the result that for the Fourier transform f̃(k) of a function f(k)
of a single variable, we have

∫
f̃(k) dk = 2πf(0) . (28)

This enables us to perform the k4 integration in the s-integrand on the right
of equation (22) to show that its value for fixed s depends on Φαβ(z(s),X)
only through its value on the hyperplane X4 = 0, i.e. nαXα = 0. This
hyperplane is mapped by Expz into the hypersurface Σ(s) formed by all
geodesics through z(s) orthogonal to nα. It follows that for each s, the
s-integrand on the right of equation (22) depends on ϕαβ only through its
values on Σ(s).

Now define a scalar function τ(x) by τ(x) = s if x ∈ Σ(s) and let wα

be any vector field such that wα∇ατ = 1. Then we have a corresponding
decomposition

∫
Tαβϕαβ Dx =

∫
ds

∫

Σ(s)

Tαβϕαβwγ dΣγ , (29)
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of the left of equation (21), where dΣα is the vector-valued surface element
on Σ(s). Since both these s-integrals are expressions for Mαβ[Φαβ ], it follows
that the two s-integrands are equal, so that

∫

Σ(s)

Tαβϕαβwγ dΣγ =
1

(2π)4

∫
Dk m̃αβ(s, k)Φ̃αβ(z(s), k) . (30)

It is now straightforward to express ϕαβ in terms of Φ̃αβ and so to identify

m̃αβ(s, k) as an integral over Σ(s). By expanding the resulting integrand as
a series in kα we may obtain explicit expressions for the moments mδ···γαβ

as integrals of Tαβ over Σ(s).
The moment defining equations of Sections 6 and 7, together with the

symmetry and orthogonality conditions, provide an implicit definition of the
moments. The above result shows that this implicit definition determines
unique explicit expressions for the moments as integrals of Tαβ, a result that
eluded Mathisson as we saw in Section 5. We are, therefore, already part
way toward our goal.

9. Further revision of the moment definitions

We shall not give further detail here of the explicit expressions for the
moments of the previous section as there are further modifications needed
to the moment definitions before we can reach the goal of an exact solution
to the variational equation. This time the variational equation itself is to be
our guide. This equation is obtained by taking ϕαβ to have the form

ϕαβ = ∇(αωβ) (31)

for an arbitrary vector field ωα of compact support. We begin by investigat-
ing to what extent ωα is determined if we only know ϕαβ . Observe first that
if ϕαβ = 0 then ωα is a Killing vector field. Moreover, any Killing vector
field satisfies the equation of geodesic deviation along any geodesic. It fol-
lows that in the case of a nonzero ϕαβ , ωα should be expected to satisfy an
inhomogeneous form of the equation of geodesic deviation with the source
term determined by ϕαβ .

This is indeed so. It is easily shown that ωα satisfies

δ
2

du2
ωα + ωβẋγẋδRβ

·γδα = ẋβẋγ∇{βϕαγ} , (32)

along all affinely parameterised geodesics xα(u), where ẋα = dxα/du and
curly brackets around three indices are defined by

A{αβγ} = Aαβγ − Aβγα + Aγαβ . (33)
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The sign convention for the curvature tensor is such that

∇[βγ]ωα = 1
2Rδ

·αβγωδ . (34)

By integrating the equation for ωα along all geodesics through a fixed point
z, we can, therefore, find ωα everywhere if we only know ωα and ∇βωα at
z, as these values determine the required initial conditions for any geodesic.
But ∇(βωα) = ϕβα, so in fact we only need

Aα(z) ≡ ωα(z) and Bαβ(z) ≡ ∇[αωβ](z) . (35)

Given a base point z, this construction will determine a vector field ωα

from an arbitrary tensor field ϕαβ , for any values of Aα and antisymmetric
Bαβ at z. We shall let λα(z, x) be the vector field so obtained when we
take Aα = 0 and Bαβ = 0. It is, of course, also a functional of the field
ϕαβ , but we shall leave this dependence implicit. Similarly we let ξα(z, x)
be the vector field so obtained when we take ϕαβ = 0 but leave Aα and Bαβ

arbitrary, its dependence on these two tensors at z again being left implicit.
If ϕαβ , Aα and Bαβ are constructed as above from a given ωα then we have

ωα(x) = λα(z, x) + ξα(z, x) (36)

for any z. Note that ξα satisfies the true equation of geodesic deviation, i.e.

with no source term.
To continue, we need to be able to differentiate fields such as Φαβ(z,X)

in a covariant manner, with respect to both z ∈ M and X ∈ Tz(M). We
give the required formulae for a field Ψα

· β so as to illustrate the terms that
arise from both contravariant and covariant indices. We define

∇α∗Ψ
β
· γ =

∂

∂zα
Ψβ

· γ − Γ ε
αδX

δ ∂

∂Xε
Ψβ

· γ + Γ β
αδΨ

δ
· γ − Γ δ

αγΨβ
· δ (37)

and

∇∗α Ψβ
· γ =

∂

∂Xα
Ψβ

· γ , (38)

where the Levi–Civita connection Γα
βγ is evaluated at z. The first of these

differs from the usual covariant derivative only through the addition of one
term involving a derivative with respect to Xα. The second needs no con-
nection terms since the components of Xα form a rectangular coordinate
system on the flat tangent space. As shown in [15], these operations have
a natural expression within the theory of connections on vector bundles.
It can be shown that ∇α∗ commutes with Fourier transformation and that
∇α∗X

β = 0.



42 W.G. Dixon

With this notation it can be shown that

ExpA∇(αλβ) = ∇∗(αMβ) − 1
2Λγ∇∗{αGγβ} (39)

and

Ξαβ ≡ ExpA∇(αξβ)

= 1
2Aγ∇γ∗Gαβ + BγδXδGαβγ − Bγδ∇∗(α(Gβ)γXδ) , (40)

where
Gαβ = ExpAgαβ , Gαβγ = 1

2∇∗{αGγβ} (41)

and
Λα = ExpAλα , Mα = ExpAλα = GαβΛβ . (42)

The Aα and Bαβ are evaluated at z and are the values used in the construc-
tion of ξα. Indices of tensors on Tz(M) are raised and lowered with gαβ(z),
which is the flat metric on this tangent space, and is why we need different
symbols for the lifts of the contravariant and covariant forms of the vector
field λα(z, x). The field Ξαβ(z,X) is defined by equation (40).

If ϕαβ = ∇(αωβ) as is used in the variational equation then these results
give

Φαβ + 1
2Λγ∇∗{αGγβ} = ∇∗(αMβ) + Ξαβ . (43)

The right hand side is particularly simple as its first term only involves
partial differentiation and its second term is completely determined by the
parameters Aα and Bαβ at z. The left hand side is well defined for a general
field ϕαβ(x) as this completely determines λα(z, x) and hence also Λα(z,X).

We capitalise on this simplicity by modifying the definition of the mo-
ments to take advantage of it. We replace equation (21) by

∫
Tαβϕαβ Dx = Mαβ

[
Φαβ + 1

2Λγ∇∗{αGγβ}

]
, (44)

where the functional Mαβ remains defined by (22) and (23). The additional
term vanishes in a flat spacetime since Gαβ is then constant, so we are only
modifying the gravitational contribution to the moments.

10. The orthogonality conditions revisited

The variational equation now becomes

Mαβ[∇∗(αMβ) + Ξαβ ] = 0 . (45)

Since Fourier transformation gives

F [∇∗(αMβ)] = −ik(αM̃β) , (46)
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we have from (22) and (23) that

Mαβ [∇∗(αMβ)] =
1

(2π)4

∫
ds

∫
Dk t̃αM̃α , (47)

where

t̃α(s, k) ≡ −i kβm̃αβ(s, k) =
∑ (−i)n

n!
kγ · · · kβtγ···βα , (48)

with

tα = 0 , and tδ···γβα = (n + 1)m(δ···γβ)α for n ≥ 0 . (49)

For n = 0 and n = 1 the tensors mδ···γβα and tδ···γβα are equivalent in
that each can be expressed in terms of the other. For n ≥ 2, i.e. when these
tensors have four or more indices, we can decompose mδ···γβα through the
use of symmetry operations into two tensors, one being tδ···γβα and the other
being the tensor with the same number of indices from the set

Jζ···εδγβα ≡ mζ···ε[δ[βγ]α] for n ≥ 0 . (50)

The nested square brackets denote antisymmetrisation independently over
pairs of indices, the opening and closing brackets being paired in order from
left to right. In (50) this means that antisymmetrisation is applied indepen-
dently to the index pairs δγ and βα. It follows from these definitions that
the J ’s have the symmetry properties

Jζ···εδγβα = J (ζ···ε)[δγ][βα] and Jζ···εδ[γβα] = 0 for n ≥ 0 , (51)

Jζ···[εδγ]βα = 0 for n ≥ 1 , (52)

which for n = 0 and n = 1 are the symmetries of the curvature tensor
Rδγβα and its first derivative ∇εRδγβα, in the latter case when the Bianchi
identities are taken into account.

A similar decomposition by symmetry operations can be made of the set
(27) of orthogonality conditions. It follows from (50) that (27) implies

nζJ
ζ···εδγβα = 0 for n ≥ 1 . (53)

The remaining restrictions in the set (27) are

nδm
δ(γ···β)α = 0 for n ≥ 1 . (54)

So although the orthogonality conditions can be decomposed and one set
(53) involves only the J ’s, the other set (54) does not involve only the t’s.
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We can largely achieve such a separation if we replace the members of
set (54) with n ≥ 2 by the set

nδt
δγ···βα ≡ (n + 1)nδm

(δγ···β)α = 0 for n ≥ 2 . (55)

These have the same symmetry properties as those of set (54) and hence
they impose the same number of constraints. They have the advantage,
however, of constraining precisely those parts of the m’s that occur in the
variational equation. We, therefore, make this change, which is of course
a further change to the definition of the moments.

At the same time we omit the remaining condition n = 1 of the set (54).
We cannot extend (55) to include n = 1 since for this case (54) is symmetric
but (55) is not, so this would increase the number of constraints and we
have already shown that the original set (27) suffices to ensure uniqueness
of the moments. We shall see in due course precisely what freedom is left in
the moments as a result of this omission.

11. Solution of the variational equation

We now show that as a consequence of the constraints (55), the varia-
tional equation (45) can be solved exactly. Substitute from (48) into (47)
and from the result into (45). Then separate out the two terms in the sum-
mation whose t tensors are not constrained by (55). Integrate these two
terms over k and then express the result in terms of the m’s and ωα instead
of the t’s and λα. With use of the expression (40) for Ξαβ , the variational
equation can then be put in the form

∫
ds

(
mβα∇βωα(z) + mγβα∇γβωα(z) + AαFα + 1

2Bαβ(Kαβ + Lαβ)

+
1

(2π)4

∫
Dk M̃α

∑

n≥3

(−i)n

n!
kγ · · · kβtγ···βα

)
= 0 , (56)

where

Fα =
1

2(2π)4

∫
m̃βγ∇α∗G̃βγ Dk , (57)

Kαβ =
(−2i)

(2π)4

∫
t̃γ∇∗[αG̃β]γ Dk (58)

and

Lαβ =
2i

(2π)4

∫
G̃γδ[α∇∗β]m̃

γδ Dk . (59)

Let, as before, Σ(s) be the hypersurface formed by all geodesics through
z(s) that are orthogonal at z to nα(s). The method of Section 8 then
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shows that as a consequence of (55) the k-space integral in (56) depends
on λα(z(s), x) only through its values on Σ(s). The construction of λα in
Section 9 shows in turn that its values on Σ(s) are determined by the values
of ωα(x) on Σ(s).

We will show that all the other terms in the s-integrand of (56) can
be reduced to a form with this restricted dependence and, moreover, also
dependent on ωα only through the value of it and its first two derivatives at z.
Once this is done, since the vector field ωα is arbitrary it follows that the
s-integrand must vanish separately for each value of s. But this integrand
can be regarded as a generalised function, i.e. a continuous linear functional,
on M itself rather than on Σ(s). Its vanishing, therefore, implies that the
infinite series in the k-space integral must be identically zero, as must be
the coefficients of ωα and its first two derivatives in the other terms of this
integrand. Note that these latter terms correspond to terms in the infinite
series that are constant, linear and quadratic in kα and it is because such
terms are absent that the series and the remainder of the integrand must
vanish separately.

We now follow this through. At each point of L, define the projection
operators

P ·β
α ≡ χnαvβ and Q ·β

α ≡ Aβ
α − P ·β

α , (60)

where χ ≡ 1/(nαvα) and Aβ
α is the unit tensor. Then the values at z(s) of

ωα , Q ·γ
β ∇γωα and Q ·ε

γ Q ·δ
β (∇(εδ)ωα + hεδn

ζ∇ζωα) , (61)

can all be evaluated from knowledge of ωα(x) on Σ(s). Here hβα is sym-
metric and is the extrinsic curvature tensor (or second fundamental form)
of Σ(s), defined by

hβα = nβnγ∇γnα −∇βnα , (62)

where nα is the field of unit normals to Σ(s), which of course agrees with
nα(s) on L. In a flat spacetime Σ(s) is a hyperplane so hβα = 0 and in
a Minkowskian coordinate system the quantities on which the projection
operators act reduce to the first and second partial derivatives of ωα.

Decompose the derivatives of ωα in (56) into the projections listed in (61)
together with similar projections in which one or more of the Q operators
is replaced by the corresponding P . Wherever a P operator occurs, use the
identity

P ·γ
β ∇γ ≡ χnβ

δ

ds
(63)

and perform an integration by parts with respect to s. In this way all P
operators can be eliminated to leave, as the s-integrand, a reduced expression
involving only the projections listed in (61) and so, as required, dependent
on ωα only through its values on Σ(s).
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We perform this reduction process in stages, drawing conclusions as we
go along. We have already seen that the mere existence of this reduction
requires the infinite series in the k-space integral of (56) to vanish, so that

tγ···βα = 0 for n ≥ 3 . (64)

Taken with (58), this is sufficient to give Kαβ = 0 as the terms that remain
evaluate to zero identically.

It is easily seen that only one term in the reduced expression will involve
∇(γβ)ωα and that vanishing of its coefficient gives

Q ·γ
ε Q ·β

δ m(ǫδ)α = 0 . (65)

From this m(γβ)α must have the form

m(γβ)α =
1

2
v(γSβ)α (66)

for some tensor Sαβ that at this stage is not necessarily antisymmetric. This
gives

mγβα =
1

2

(
S[γβ]vα + S[γα]vβ + S(βα)vγ

)
(67)

and hence

mγβα∇γβωα =
1

2
Sβα δ

ds
∇βωα +

1

2
ωαvβS[γδ]Rα

·βγδ . (68)

The first term on the right of (68) requires an integration by parts during
the reduction process, following which the coefficient of ∇βωα in the reduced
expression can be read off and its vanishing seen to give

Q ·β
γ

(
mγα − 1

2

δ

ds
Sγα +

1

2
Lγα

)
= 0 . (69)

The bracketed expression, therefore, has the form

mβα − 1

2

δ

ds
Sβα +

1

2
Lβα = vβpα (70)

for some vector pα. The symmetric and antisymmetric parts of this give

mαβ = p(αvβ) +
1

2

δ

ds
S(αβ) (71)

and
δ

ds
S[αβ] = 2p[αvβ] + Lαβ . (72)
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It also shows that
(

mβα − 1

2

δ

ds
Sβα +

1

2
Lβα

)
∇βωα = pα δ

ds
ωα . (73)

This requires another integration by parts during the reduction process
before the coefficient of ωα can be read off and its vanishing seen to give

δ

ds
pα =

1

2
vβS[γδ]Rα

·βγδ + Fα . (74)

This completes the solution of the variational equation but it has left us
with some freedom in the definitions of mβα and mγβα. This was anticipated
in Section 10 when we omitted to make a replacement for the case n = 1
of the set (54) in our revision of the orthogonality conditions. It is easily
shown that the change from Mathisson’s original moment defining equation
(3) to the final form (44) affects only the quadrupole and higher moment
terms. The contributions to this equation from the monopole and dipole
moments mβα and mγβα can, therefore, be found by substituting from (71)
and (67) into (3). The two terms involving S(αβ) then combine into a total
s-derivative that integrates to zero, leaving only contributions from pα and
S[αβ]. It follows that S(αβ) can be chosen arbitrarily without affecting the
values of any other moments.

One possibility would be to retain the condition nγmγβα = 0 omitted

from the set (54). This would determine S(αβ) in terms of S[αβ]. In the
case nα = vα this recovers the forms (7) and (8) for mβα and mγβα seen in
Section 3 in connection with the pole–dipole approximation. We shall make
the simpler choice

S(αβ) = 0 , (75)

which, in the context of Section 3, recovers the forms given in (12).
This completes the set of conditions required to ensure uniqueness of the

moments.

12. Description of an extended body

In the light of these results, an extended body in general relativity can
be described by an infinite set of tensors defined along an arbitrarily chosen
world line L described by a parameter s which is not necessarily proper time.
The set consists of a momentum vector pα, an antisymmetric spin tensor
Sβα and a set Jζ···εδγβα, for n ≥ 0, of quadrupole and higher moments that
satisfy the symmetry conditions (51) and (52). Here, as throughout, n is the
number of indices in the set indicated by dots, including the two delimiting
indices in the count.
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These moments are not uniquely determined, but they become so if we
choose an arbitrary field nα of timelike unit vectors along L and require the
J ’s to satisfy the orthogonality conditions (53). Note that even though the
lowest order moment affected by the orthogonality conditions is the octopole
moment, the values of all moments, including the momentum and spin, are
affected by this choice.

The original set mβ···α of moments that formed the starting point of the
development is now given by

mαβ = p(αvβ) and mαβγ = Sα(βvγ) , (76)

which follow from (71), (67) and (75), and

mα···βγδε =
4n

n + 2
J (α···β|δ|γ)ε for n ≥ 1 , (77)

which follows from (50), (49) and (64). The vertical bars ‘|’ enclose indices
that are to be excluded from the symmetrisation. The moments are defined
implicitly by their relationship with the energy-momentum tensor, given in
terms of the m’s by (44) and its related equations.

As a consequence of the energy-momentum conservation law (5) the mo-
ments satisfy the two equations of motion

δ

ds
pα =

1

2
vβSγδRα

·βγδ + Fα (78)

and
δ

ds
Sαβ = 2p[αvβ] + Lαβ , (79)

where Fα and Lαβ are the gravitational force and torque due to the quadru-
pole and higher moments, given by (57) and (59). Note that although (57)
and (59) apparently also involve the monopole and dipole moments, those
contributions vanish identically. These equations of motion reduce to the
pole–dipole equations (11) when Fα and Lαβ are neglected.

It is important to note that equations (78) and (79) are the only restric-
tions placed on the moments by (5). Suppose that tensor fields pα, Sβα and
Jζ···εδγβα are given along L subject only to the equations of motion (78) and
(79) and the above symmetry and orthogonality conditions. Then (44) de-
termines a Tαβ, which in general will be a distribution (generalised function)
rather than an ordinary tensor field, that satisfies (5) identically. Use of the
variational equation has extracted all the consequences of energy-momentum
conservation.
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To complete the proof of the above results we still need to show that
moments do exist that satisfy our new moment defining equation and with
the symmetry and orthogonality conditions we have required. This has been
done in [13–15] and it leads to explicit and uniquely determined expressions
for pα, Sαβ and the J ’s as integrals of the energy-momentum tensor over the
hypersurfaces Σ(s) formed by the geodesics through z(s) orthogonal to nα.
It is through the dependence of the hypersurface of integration on nα that
all the moments are affected by the orthogonality conditions even though
those conditions apply only to the octopole and higher moments.

The explicit expressions for pα and Sαβ are particularly simple. Treat
z(s) ∈ L as a fixed point and let Aα, Bαβ be an arbitrary vector and anti-
symmetric tensor at z. As in Section 9 let ξα(z, x), considered as a vector
function of x, be the solution of the equation of geodesic deviation that
satisfies

ξα = Aα , ∇αξβ = Bαβ , at x = z . (80)

Then

Aαpα +
1

2
BαβSαβ =

∫

Σ(s)

ξαTαβ dΣβ . (81)

It is possible to give ξα explicitly in terms of Aα and Bαβ by the use
of two-point tensors and so to resolve (81) into explicit integrals for pα and
Sαβ , as shown in [13], but this adds little for present purposes so it will not
be given here. The special case of a flat spacetime is of interest, however.
In a Minkowskian coordinate system

ξα(z, x) = Aα − BαβXβ where Xα = xα − zα , (82)

so that (81) gives

pα =

∫

Σ(s)

Tαβ dΣβ , (83)

Sαβ = 2

∫

Σ(s)

X [αT β]γ dΣβ . (84)

The hypersurface Σ(s) is specified in these expressions as the hyperplane
through z(s) orthogonal to nα. However, the values of these integrals are
independent of the choice of the hypersurface of integration. We have in fact
recovered the definitions (15) and (16) of momentum and angular momentum
in special relativity given in Section 4, but now they appear as part of
a systematic treatment of multipole moments.
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13. Equations of motion in the multipole approximation

If we substitute for m̃αβ from (23) into the expressions (57) and (59) for
Fα and Lαβ, we may exchange the order of the summation and the k-space
integration. The integration may then be performed term by term to obtain
a formal multipole expansion of the force and torque which can be truncated
to give a multipole approximation to any desired order. The multipole ex-
pansion is most easily expressed in terms of the extensions gαβ,γ···δ of the
metric tensor gαβ as defined by Veblen and Thomas [19]. These are the
tensors that reduce at the pole of a normal coordinate system to the partial
derivatives of the metric tensor. This is a natural construction in our context
as the image under the exponential map of a rectangular coordinate system
in the tangent space Tz(M) is a normal coordinate system on M with z as
its pole. We obtain

Fα =
1

2

∑

n≥2

1

n!
mε···δγβ∇αgγβ,ε···δ (85)

and

Lαβ =
∑

n≥1

1

n!
gγ[αmβ]ε···δζηg{γη,ζ}ε···δ . (86)

The extensions are easily evaluated in terms of the curvature tensor and the
lowest two are

gαβ,γδ = −2
3Rα(γδ)β , gαβ,γδε = −∇(γR|α|δε)β . (87)

With these results we have completed the realisation of the first two aims
laid down in Section 5.

14. Centre of mass revisited

We return now to a further study of the centre of mass. The expressions
for pα and Sαβ given by (81) show that their values at z depend on L and
the vector field nα along it only through the point z and the value of nα

at this point. Although this may seem natural, the expressions for the J ’s
are significantly more complicated. They depend not only on z and nα but
also on their first derivatives along L at z. This dependence arises through
the vector field wα introduced in Section 8 in the splitting of an integral
over M into one over Σ(s) followed by one over L. Although it is perhaps
surprising, the expressions for pα and Sαβ do not involve wα and so are free
of this derivative dependence.

The expressions for pα and Sαβ can, therefore, be considered as functions
of a general point z ∈ M and timelike unit vector nα at z. As seen in
Section 4, in a flat spacetime the function pα(z, n) is independent of nα so at
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any point z we can choose nα to be parallel to pα(z). This suggests that in
a curved spacetime we can expect to find an nα that is parallel to pα(z, n)
even though this is now an implicit equation, i.e. we can choose

pα(z, n) = M(z)nα , (88)

which also serves to define the mass M(z). With this choice of nα we can
consider pα and Sαβ to be functions only of z. The Tulczyjew condition

pβSαβ = 0 , (89)

then becomes an equation for z and the locus of its solutions can be expected
to be a uniquely determined world line that we may take as our base line L.
It has been proved by Schattner [17,18] that subject to mild restrictions on
the strength of the gravitational field, these expectations are fulfilled. These
conditions do determine the field nα and the line L uniquely.

It is clear that this choice of L agrees in special relativity with the centre
of mass line of Møller [5] described in Section 4, but this is not a very strin-
gent test. That section also mentions an infinite set of possible definitions
for centre of mass in general relativity, of which a proposal by the present
author in [7] is just one, all of which would pass this same test. They all use
the Tulczyjew condition (89) but differ in their definitions of pα and Sαβ.
The present proposal, based on the pα and Sαβ of Section 12, is at first sight
simply another of this set. A more stringent test is, therefore, needed to
show why it is a preferred choice.

Such a test is provided by motion in a spacetime of constant curvature.
The homogeneity and isotropy of such a spacetime should imply the absence
of any gravitational force or torque on any extended test body and the world
line of its centre of mass would be expected to be a geodesic. We shall show
that the present proposal passes this test.

In a spacetime of constant curvature the vector field ξα of Section 9 is
a Killing vector field, i.e. satisfying ∇(αξβ) = 0, for all choices of the initial
values Aα and antisymmetric Bαβ . Then (40) gives Ξαβ = 0. It is Ξαβ that
gives rise to the terms in (56) containing Aα and Bαβ, so the vanishing of
Ξαβ implies Fα = 0 and Kαβ + Lαβ = 0. Since we saw in Section 11 that
Kαβ = 0 in all cases, we therefore have

Fα = 0 and Lαβ = 0 , (90)

so that the gravitational force and torque vanish. But in a space of constant
curvature

Rαβγδ = k(gαγgβδ − gαδgβγ) , (91)
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where k is its scalar curvature. Eqs. (78) and (79), therefore, simplify to

δpα

ds
= kSαβvβ ,

δSαβ

ds
= 2p[αvβ] . (92)

Application of δ/ds to (89) and use of (88) and (92) then gives

M2(vα − nβvβnα) = kSαβSβγvγ . (93)

Now (89) implies that, considered as a matrix, Sαβ is singular. Its rank is
even, since it is antisymmetric, so its rank must be 2. Hence S[αβSγ]δ = 0,
from which it follows that

SαγSγδS
δβ + S2Sαβ = 0 , (94)

where S2 ≡ 1
2SαβSαβ. Multiplication of (93) by Sδα with further use of (89)

then gives
(M2 + kS2)Sαβvβ = 0 . (95)

It follows that apart from one exceptional case Sαβvβ = 0, which with
(93) shows vα to be parallel to pα. If we take s to be proper time along L,
which we have not yet required, then pα = Mvα. The equations of motion
(92) then reduce to

dM

ds
= 0 ,

δvα

ds
= 0 ,

δSαβ

ds
= 0 , (96)

so that the mass M is constant, L is a geodesic and Sαβ is covariant constant
along it, as was claimed.

This calculation is the first place that the choice of parameter s on L has
had any significance. It is easily seen from (44) and (22) that the effect of
a change of parameter on the moments is to scale the m’s uniformly for each
s but that in general the scale factor will be s-dependent. This corresponds
to scaling the J ’s but leaving pα and Sαβ unchanged. This is the only
remaining freedom in the definition of the moments and it is a trivial one.
Although the natural choice at first seems to be to take s as proper time
along L, i.e. vαvα = 1, many expressions are simplified if we instead choose
s so that vαnα = 1. Two examples are (60) and (93) but there are many
others. This is not a compelling reason, however, so it is perhaps best to
leave the choice open.

The exceptional case mentioned above is when M2+kS2 =0.When this
holds, (89) no longer determines L uniquely. This is not physically relevant
as it corresponds to impossibly extreme circumstances, but it is of theoretical
interest as it shows that physical conditions do have to be imposed on the
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body to ensure this uniqueness. A set of sufficient conditions has been given
by Schattner [17, 18]. A momentum-velocity relationship has been deduced
in the general case from (78), (79) and (89) by Ehlers and Rudolph [16].
This too has an exceptional case. It determines vα uniquely only if M2 +
1
4RαβγδS

αβSγδ 6= 0, of which the condition for a spacetime of constant
curvature is a special case.

These results are sufficient to distinguish the world line characterised
by (88) and (89), with the pα and Sαβ of (81), as a preferred choice for the
definition of the centre of mass in general relativity. This construction for pα

and Sαβ arises naturally from the completion of the Mathisson programme
presented here, which ties the solution of the centre of mass problem firmly
into this theory of multipole moments. With this work we have realised the
third aim laid down in Section 5.

15. Conclusions

In 1937 Mathisson published a paper that introduced a new approach to
the problem of motion in general relativity, in which an extended body was
described by an infinite set of multipole moments. A central feature of his
approach was what he termed the variational equation of dynamics. Other
authors subsequently developed the multipole approach by means other than
through the variational equation. They were able to re-derive Mathisson’s
results but not to extend them much further.

This paper has shown how the multipole programme initiated by Math-
isson can be taken to completion, so obtaining equations of motion to an
arbitrarily high multipole order, by bringing the variational equation back
and using it as a key to further development. This extension of Mathisson’s
work leads to unambiguous expressions for the momentum and spin of an
extended body as integrals of the energy-momentum tensor. It has also been
shown how these expressions form the basis for a definition of the centre of
mass of such a body that has features which distinguish it among a large
class of similar definitions.

The author is indebted to Professor Andrzej Trautman for inviting him
to this meeting and giving him this opportunity to promote the memory
of Myron Mathisson and his work, which the author believes has long been
unduly neglected.
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