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The status of Hadamard’s problem of diffusion of waves for second
order hyperbolic equations of normal hyperbolic type in four independent
variables is reviewed wherein the contributions of Myron Mathisson are
highlighted. A new family of non-trivial, non-self-adjoint wave equations
which satisfy Huygens’ principle in the strict sense is given.
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1. Introduction

In a seminal 1939 paper Myron Mathisson [37] made a fundamental
contribution to the solution of Hadamard’s problem of diffusion of waves
first posed in his 1923 Yale Lectures [31]. This problem arises in the study of
Cauchy’s problem for second order, linear, homogeneous, partial differential
equations of normal hyperbolic type in n independent variables. Such an
equation may be written in coordinate invariant form as

F (u) ≡ gij∇i∇ju + Ai∇iu + Cu = 0 , (1.1)

where gij are the contravariant components of the metric tensor g of
a Lorentzian space (M,g) of signature 2 − n and ∇i denotes the covari-
ant derivative with respect to the Lorentzian connection.

∗ Presented at the conference “Myron Mathisson: his life, work and influence on current

research”, Stefan Banach International Mathematical Center, Warsaw, Poland, 18–20

October 2007 .
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Cauchy’s problem for the equation (1.1) is the problem of determining
a solution which assumes given values for u and its normal derivative on
a given space-like (n−1)-dimensional submanifold S. These given values are
called the Cauchy data. The first general solution to Cauchy’s problem for
(1.1) was given by Hadamard [31]. Alternate solutions have been presented
by Mathisson [36], Sobolev [46], Bruhat [10], and Douglis [25].

The question of how the value of the solution u at a point x0 ∈ M
depends on the Cauchy data is of considerable interest. Hadamard shows
that in general u(x0) depends on the data on and in the interior of the
intersection of the retrograde characteristic conoid C−(x0) with the initial
surface S. If the solution depends only on the data in an arbitrarily small
neighbourhood of S∩C−(x0) for every Cauchy problem and for every x0, one
says that the equation satisfies Huygens’ principle or is a Huygens equation
or in the terminology of Mathisson an equation of pure waves. Examples of
such equations are the ordinary wave equations

∂2u

∂x12
−

2m
∑

i=2

∂2u

∂xi2
= 0 , (1.2)

in an even number of variables n = 2m > 4.
Hadamard asked the fundamental question: for which equations is Huy-

gens’ principle true. This is called Hadamard’s problem in the literature. He
showed that in order for Huygens’ principle to be valid it is necessary that n
be even and > 4. He further showed that a necessary and sufficient condition
for its validity is that the elementary solution contain no logarithmic term.
He recognized the limitation of his condition stating ([31], p.236):

We have said that give an answer and not the answer, to our question:
for it is clear that we can wish it “plus résolu” than it has been in
the above. We have enunciated the necessary and sufficient condition,
but we do not know how equations satisfying it can be found, or even
whether any exist except (e2m−1) (our (1.2)) (and, of course, those
that are deduced from (e2m−1) by trivial transformations).

The problem is quite difficult since the condition involves the coefficients
of (1.1) in a very indirect and complicated manner. Since none other
than (1.2) were known, he suggested that as a first step one should at-
tempt to prove that every Huygens equation is equivalent to some equation
of the form (1.2). This suggestion has been called Hadamard’s conjecture in
the literature (see Courant and Hilbert [18], p. 765).

Recall that two equations of the form (1.1) are said to be equivalent
if they are related by one of the following transformations called trivial
transformations that preserve the Huygens’ property of the equation:
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(a) a transformation of coordinates,

(b) multiplication of the equation by a non-vanishing factor e−2φ, where
φ is a function on M (this transformation induces a conformal trans-
formation of the metric),

(c) replacement of the unknown function u by λu, where λ is a non-
vanishing function on M .

An equation (1.1) which is equivalent to an equation (1.2) is said to be
trivial.

The first significant progress towards the solution of Hadamard’s prob-
lem was made by Mathisson [37, 38]. Studying the case n = 4, he proved
Hadamard’s conjecture under the assumption that the Lorentzian metric g
is flat. He also claimed to have proved the conjecture in the general case
n = 4 [37]. However, only the proof for the case when g is assumed flat
was published before his untimely death in 1940. Mathisson’s proof is di-
vided into two parts. He had apparently concluded that the solution to the
problem could not be obtained from Hadamard’s condition stating in [38]
that

La condition de M. Hadamard ne nous en dit rien; et en générale, il
semble fort malaisé d’en tirer des indications plus précises sur la forme
des équations à ondes pures.

His first step then was to derive an alternate necessary and sufficient con-
dition based on a solution to Cauchy’s problem for (1.1) in the case n even
that had been given an in earlier paper [36]. In this approach the neces-
sary and sufficient condition for a Huygens equation is that the approximate
elementary solution (parametrix) v which he introduces and which reduces
the solution of Cauchy’s problem to that of an integral equation of Volterra
type, is in fact an exact solution; that is it satisfies

G(v) = 0 , (1.3)

where
G(v) ≡ gij∇i∇jv −∇i(A

iv) + Cv , (1.4)

is the adjoint differential operator. The second part of the proof consists
in finding the equations (up to equivalence) where this condition is satis-
fied. It is this part that has had a lasting impact on subsequent research.
Mathisson’s strategy for the solution of (1.3) is the following:

1. Expand in the neighbourhood of a point x0 the function v in powers
of the spherical polar coordinate r.
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2. Calculate, using this expansion, the analogous expansion of G(v).

3. Set to zero the consecutive terms of the expansion of G(v) and utilize
each equation thus obtained to simplify the following ones.

4. Profit from the circumstance that the choice of the point x0 is arbitrary.

He states that it seems reasonable to hope that the first few necessary condi-
tions obtained in this way would be sufficient to completely characterize the
coefficients of all equations of pure waves (Huygens equations). Mathisson
in addition uses the trivial transformations (a) and (c) to simplify the cal-
culations. Following this plan for the case when

gij = diag(1,−1,−1,−1) , (1.5)

he obtains the following conditions from the first three terms in the expan-
sion:

C −
1

2

∂Ai

∂xi
−

1

4
AiA

i = 0 , (1.6)

∂Hi
j

∂xj
= 0 , (1.7)

Hij ≡
1

2

(

∂Ai

∂xj
−

∂Aj

∂xi

)

= 0 . (1.8)

These conditions are necessarily invariant under the transformations (a)
and (c). The equation (1.8) implies that there exists a function λ such
that

Ai = −2
∂ log λ

∂xi
. (1.9)

Now the substition (c) transforms (1.1) into an equation of the same form,
namely

F [u] := gij∇i∇ju + A
i
∇iu + Cu = 0 , (1.10)

where

Ai = Ai + 2
∂ log λ

∂xi
, (1.11)

C = C + λ−1
2λ + Ai ∂ log λ

∂xi
, (1.12)

where 2 ≡ gij∇i∇j denotes the wave operator. It follows from (1.9), (1.11),

and (1.12) that A
i
= 0 and C = 0, which implies that (1.1) where g is given

by (1.5) is equivalent to the ordinary wave equation (1.2) in four dimensions.
This completes Mathisson’s proof of Hadamard’s conjecture in this case.
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Hadamard re-visited Mathisson’s proof in a 1942 paper [32] dedicated
to his memory. He adopts the general approach followed by Mathisson but
bases his proof instead on the necessary and sufficient condition that he
gives in [31]. Hadamard justifies his choice in the following comment on
Mathisson’s proof:

Now, it seemed to me that this roundabout use of an integral equation
by introduction of a special parametrix could be avoided, since the
exact elementary solution can actually be constructed; and indeed, it
seems that the proof becomes simpler this way.

Hadamard’s more direct approach leads to a concise proof for the conjecture
that has had important consequences for subsquent work on the problem.

Hadamard’s conjecture is now known not to be true in general. The first
counter-examples were given by Stellmacher [47] in 1953 for the case n = 6.
In a later paper [48] he gives examples for all even dimensions n > 6. These
examples are given by the equation

∂2u

∂x12
−

2m
∑

i=2

∂2u

∂xi2
+

(

λ1

(x1)2
−

2m
∑

i=2

λi

(xi)2

)

u = 0 , (1.13)

where
−λi = νi(νi + 1) , νi = 0, 1, 2, . . . (1.14)

2m
∑

i=2

νi 6 m − 2 . (1.15)

For example, when m = 3, one possibility is

∂2u

∂x12
−

2m
∑

i=2

∂2u

∂xi2
−

2u

(x1)2
= 0 , (1.16)

which is one of the first examples given by Stellmacher. In order to see that
the equation (1.13) is not equivalent to the wave equation (1.2) one notes
that necessary and sufficient conditions for equivalence are [17, 28]

Cijkl = 0 , (1.17)

Hij = 0 , (1.18)

C := C −
1

2
Ai

;i −
1

4
AiA

i −
n − 2

4(n − 1)
R = 0 , (1.19)

where Cijkl denotes the Weyl conformal curvature tensor, R the curvature
scalar associated to the metric gij , and ; i denotes the covariant derivative.
The definitions of these quantities are as follows:

Cijkl ≡ Rijkl − 2g[i[lLj]k] , (1.20)
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where Rijkl is the Riemann curvature tensor, Rjk ≡ gilRijkl is the Ricci

tensor, R ≡ gjkRjk is the curvature scalar, and Lij ≡ −Rij + 1
6gijR. The

result then follows, since the conditions (1.17) and (1.18) hold for (1.13),
while (1.19) does not since C 6= 0. We shall shortly see why a counter-
example of the form (1.13) cannot exist for the case n = 4.

Counter-examples for n = 4 were given by Günther [29] in 1965. These
examples are given by the wave equation

2u = 0 , (1.21)

on the Lorentzian spaces with metric

ds2 = 2dx1dx2 − aαβdxαdxβ , (α, β = 3, 4) , (1.22)

where the symmetric matrix (aαβ) is positive definite with elements that are
functions only of x1. The above metric may interpreted in the framework of
general relativity as an exact plane wave solution of the vacuum or Einstein–
Maxwell field equations. It has been studied in this context by Ehlers and
Kundt [26] in a different coordinate system where it has the form

ds2 = 2dv[du + (Dz2 + Dz2 + ezz)dv] − 2dzdz , (1.23)

where D and e = e are functions only of v.
The counter-example of Günther shows that Mathisson’s claim [37] that

Hadamard’s conjecture is true in general for n = 4, is false. However, it took
forty-six years to determine the status of his claim. At the time of writing, in
spite of the considerable progress which has been made, Hadamard’s prob-
lem for n = 4 remains unsolved. For the cases n = 2m, m = 3, 4, 5, . . .,
Berest [6, 7, 9] has obtained many important results. However, the problem
for these cases also remains unresolved. For a review of the status of the
problem for n = 2m, see Berest and Vasilov [8]. Hadamard’s problem has
been generalized to systems of equations of type (1.1) including Maxwell’s
equations and higher spin wave equations by Günther and Wünsch. See
Günther [30] and Belger, Schimming and Wünsch [5] for reviews.

The purpose of the present paper is to describe the current status of
the problem for n = 4, and to present an apparently new non-trivial, non-
self-adjoint Huygens equation. We shall follow Mathisson’s general strat-
egy for attacking the problem. However, we shall base our calculations on
Hadamard’s necessary and sufficient condition which is re-written in terms
of the theory of distributions. The required theory of elementary solutions in
this language and exact form of the necessary and sufficient condition used is
given in Section 2. The first six necessary conditions together with a sketch
of their derivation is given in Section 3. Consequences of the necessary
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conditions in the form of five theorems are presented in Section 4. Sec-
tion 5 contains an apparently new example of a non-trivial, non-self-adjoint
Huygens equation. A summary of the status of Hadamard’s problem and
a suggestion for the direction of future research is given in Section 6. It
should be noted that all considerations in this paper are purely local.

2. Elementary solutions

To proceed with the discussion we need to examine Hadamard’s nec-
essary and sufficient condition for the validity of Huygens’ principle. This
condition may be expressed in terms of the elementary solutions of (1.1)
which are distributions E±

x0
(x) which satisfy the equation

G(E±
x0

(x)) = δx0
(x) , (2.1)

where δx0
(x) is the Dirac delta distribution (see Friedlander [27]). Lich-

nerowicz [35] has shown that these elementary solutions exist and are unique
for C∞ equations. Furthermore for n = 4, they decompose as follows:

E±
x0

(x) = V (x0, x)δ±(Γ (x0, x)) + V±(x0, x)∆±(x0, x) , (2.2)

where x and x0 belong to some simple convex set Ω of M . The function V
in (2.2) is defined by

V (x0, x) =
1

2π
exp











−
1

4

s(x)
∫

0

(gijΓ;ij − 8 − AiΓ,i)
dt

t











, (2.3)

where the integration is along the geodesic joining x0 and x, Γ (x0, x) is, up
to a sign, the square of the geodesic distance between x0 and x, and s is an
affine parameter. The functions V± are defined on the closures of the sets
D±(x0) which denote the respective interiors of the future and past pointing
characteristic conoids C±(x0), as follows:

G(V±)(x0, x) = 0 , x ∈ D±(x0) , (2.4)

V± =
V (x0, x)

s(x)

s(x)
∫

0

G(V )

V
dt, x ∈ C±(x0) . (2.5)

Finally, we have

δ±(Γ (x0, x)) =

{

δ(Γ (x0, x)) , x ∈ C±(x0) ,

0 , x ∈ C∓(x0) ,
(2.6)

while ∆± denote the characteristic functions on D±(x0).
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In terms of the functions involved in the definition of the elementary
solutions, Hadamard’s necessary and sufficient condition takes the form

V±(x0, x) = 0,∀x0 ∈ M,∀x ∈ D±(x0) . (2.7)

From (2.2) we see that (2.7) is equivalent to the elementary solutions hav-
ing support only on the characteristic semi-conoids C±(x0). For purposes
of calculations a more useful form of the condition (2.7), first given by
Hadamard [32], is

[G(V )(x0, x)] = 0 , ∀x0 ∈ M , (2.8)

where the brackets [. . .] signify the restriction of the enclosed function to the
set

C(x0) = C+(x0) ∪ C−(x0) . (2.9)

The convenience of the condition (2.8) results in part from the fact that the
function V defined by (2.3) may be expressed as

V (x0, x) =
1

2π
(ρ(x0, x))−

1

2 exp











1

4

s(x)
∫

0

AiΓ,i
dt

t











, (2.10)

where

ρ(x0, x) ≡ 8(g(x)g(x0))
1

2

[

det

(

∂2Γ

∂xi∂xj
0

)]−1

, (2.11)

is the so called discriminant function and g(x) = det(gij(x)).

3. Necessary conditions

Following Mathisson’s strategy we now proceed to determine necessary
conditions on the coefficients gij , Ai, and C of (1.1) in order that Huy-
gens’ principle be satisfied. For this purpose we use Hadamard’s necessary
and sufficient condition (2.8). In view of the complexity of the condition
the calculations are lengthy and quite involved. We shall now give a brief
description of how the conditions are derived, referring the reader to the
articles [1, 39, 40] for the details of the calculations.

To begin we shall need the transformation laws for the coefficients of (1.1)
under the trivial transformations (b) and (bc) which is a combination of (b)
and (c), introduced by Hadamard [32], defined as follows:

(bc) replacement of the function u in (1.1) by λu (λ 6= 0) and simultaneous
multiplication of the equation by λ−1.
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(The transformation (bc) has the property of leaving invariant the Lorentzian
metric gij .) The transformations (b) and (bc) transform the differential
operator F (u) into an operator F (u) of the same form but with different

coefficients g̃ij , A
i
, and C. Explicitly

F (u) ≡ g̃iju;ij + A
i
u,i + Cu , (3.1)

where

g̃ij = e−2φgij , g̃ij = e2φgij , (3.2)

Ai = Ai + 2(log),i − (n − 2)φ,i , A
i
= g̃ijAi , (3.3)

C = e−2φ
(

C + λ−1
2λ + Ai(log λ)i

)

. (3.4)

The above transformations induce the following transformation on tensors
introduced earlier:

C̃i
jkl = Ci

jkl , (3.5)

H ij = Hij , (3.6)

C = e−2φC . (3.7)

The transformation laws for the adjoint differential operator and the ele-
mentary solutions are respectively [40]

G(v) = λe−nφG(λ−1e(n−2)v) , (3.8)

E
±

x0
(x) = λλ−1

0 e(2−n)φE±
x0

(x) , (3.9)

where λ0 ≡ λ(x0).
In particular when n = 4,

E
±

x0
(x) = λλ−1

0 e−2φE±
x0

(x) . (3.10)

It follows from (3.10) that the transformation laws for V and V are given by

[V ] = λ−1
0 a1[λe−2φV ] , (3.11)

V
±

= λ−1
0 λe−2φV± , (3.12)

where

a1 =
1

s

s(x)
∫

0

e2φdt . (3.13)
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Finally we have
[G(V )] = λ−1

0 a1[λe−4φG(V )] , (3.14)

from which it follows that the condition (2.8) is invariant under trivial trans-
formations (as it must be).

If one considers only the transformation (bc), then it follows from (2.3)
and (3.3) that

V = λλ−1
0 V . (3.15)

In contrast to (3.12) the above transformation holds at every point in some
normal neighbourhood of x0, not only on C(x0).

We are now in a position to describe how the necessary conditions are
derived. One begins by choosing an arbitrary point x0 ∈ M . Then a trivial
transformation (b) is made such that

o

L̃ij=
o

L̃(ij;k)=
o

L̃(ij;kl)= . . . = 0 , (3.16)

where the small o over each tensor indicates evaluation at x0. Next, following
Hadamard [32] we choose the trivial transformation (bc) by setting

λ(x) = exp











−
1

4

s(x)
∫

0

AiΓ,i
dt

t











, (3.17)

where the tildes have been dropped. It follows that λ0 = 1 and that

V (x0, x) =
1

2π
ρ−

1

2 . (3.18)

The choice (3.17) is equivalent to the requirement that

A
i
Γ,i = 0 . (3.19)

Finally the trivial transformation (a) is specified by choosing a system of
normal coordinates (xi) with origin x0. Recall that these coordinates are
defined by the condition [45]

gijx
j =

o
gij xj . (3.20)

In view of the above choices for the trivial transformations the function V
has the particularly simple form

V
∗
=

1

2π

( o
g

g

)

1

4

, (3.21)
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where the bar has been dropped and
∗
= signifies that the equation holds in

normal coordinates. It follows that the condition (2.8) may be expressed as

[σ(x0, x)]
∗
= 0 , (3.22)

where (dropping the tildes and bars)

σ
∗
= γ + Aigjkgjk,i + 4Ai

,i − 4C , (3.23)

and where

γ
∗
= (gijgklgkl,i),j +

1

4
gijgij,kg

klgmngmn,l . (3.24)

The condition (3.19) now takes the form

Aix
i ∗
= 0 , (3.25)

which is the same as that obtained by Hadamard in the flat space case. Since
this condition must hold for all x in some normal neighbourhood, one has
at x0

o

Ai=
o

A(i,j)=
o

A(i,jk)= . . . = 0 . (3.26)

These are the relations obtained by Mathisson [38] and Günther [28]
from (3.3) by a suitable choice of the derivatives of log λ at x0. However,
their true origin seems to a consequence of the choice (3.17). (Günther [28]
uses Mathisson’s form of the necessary and sufficient condition. In this work
he seems to have been unaware of Hadamard’s 1942 paper [32].)

Since σ must vanish on C(x0), the following conditions must be satisfied
by σ and its derivatives at x0:

o
σ=

o
σ,i= TS(

o
σ;ij) = TS(

o
σ;ijk) = TS(

o
σ;ijkl) = . . . = 0 , (3.27)

where TS(. . .) denotes the trace-free symmetric part of the enclosed tensor.
The derivatives of σ at x0 are calculated in a systematic way from Taylor
expansions about x0 of the tensors gij , gij , Ai, and the function C. This has
been carried out to fifth order by the second author [1, 39, 40] and to sixth
order (in the case Ai = 0) by Rinke and Wünsch [44] using the methods of
Herglotz [33] and Günther [28].

For the purposes of illustration we shall give these expansions only to
second order which is sufficient to enable us to derive the first necessary
condition. One has

gij
∗
=

o
gij +

1

3

o

Riklj xkl , (3.28)
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gij ∗
=

o
g ij −

1

3

o

R
i
kl

jxkl , (3.29)

Ai
∗
=

o

H ij xj +
2

3

o

H ij;k xjk , (3.30)

C
∗
=

o

C +
o

C ;i xi+
o

C ;ij xij , (3.31)

where xij ≡ xixj . It follows from the above and (3.23) and (3.24) that

o
σ

∗
= 4

o

C . (3.32)

Thus, on account of (3.27) the first necessary condition has the form

o

C= 0 , (3.33)

under our special choice of trivial transformations. In order to express this
condition in a form invariant under trivial transformations, it is necessary

to find an invariant which reduces to
o

C when our special choice of trivial
transformations is made. Such a quantity is the Cotton invariant defined
by (1.19) which obeys the transformation law (3.7). Thus the general form
of (3.33) at x0 is

o

C ≡
o

C −
1

2

o

A
i
;i −

1

4

o

Ai

o

A
i +

1

6

o

R= 0 .

Since x0 was chosen arbitrarily we must have at every point of M

C −
1

2
Ai

;i −
1

4
AiA

i −
1

6
R = 0 , (3.34)

which is our first necessary condition for a Huygens equation. The sub-
sequent conditions are obtained by similar procedures (see [40] for details)
and, following Mathisson’s strategy [38], by using the preceding conditions
to simplify the following ones.

Each necessary condition must be expressed by the vanishing of a tensor
(necessarily trace-free and symmetric) which is invariant under the trivial
transformations [40]. In the case of the self-adjoint equation (Ai = 0), this
involves the study of conformally invariant tensors which are constructed
from the metric tensor and its partial derivatives up to a certain order.
A theory of these tensors has been developed by Wünsch [50]. This theory
and its application to Huygens’ principle is described in Günther [30].

We list the first six necessary conditions (I–VI) below.
The history of these conditions is now described. Hölder [34] found

Condition I in the case Ai = C = 0; Mathisson [37] found it in gen-
eral. Mathisson [38], Hadamard [32], and Asgeirson [4] obtained the Con-
ditions I, II, and III in the case gij constant. The Conditions I to IV, for
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I C − 1
2Ai

;i −
1
4AiA

i − 1
6R = 0

II Hij;
j = 0

III Sijk;
k − 1

2Ck
ij

lLkl + 5
(

HikHj
k − 1

4gijHklH
kl
)

= 0

IV TS
(

SijlHk
l + Cl

ij
mHkl;m

)

= 0

V TS(3Cmijn;oC
m

kl
n

;
o + 8Cm

ij
n

;kSmnl + 40Sij
mSklm

− 8Cm
ij

nSmn;kl − 24Cm
ij

nSkl;mn + 4Cm
ij

nCn
o
kmLlo

+ 12Cm
ij

nCo
klnLmn + 12Hmi;jkHm

l − 16Hmi;jH
m

k;l

− 84Hm
iCmjknHn

l − 18HmiH
m

jLkl) = 0

VI TS(36Cn
ij

oCoklp;nHp
m − 6Cn

ij
o
;kColm

pHnp − 138Sij
nCnkloH

o
m

+ 6SijnHn
k;lm + 6Cn

ij
o
;kHnl;om − 24Sijn;kHn

l;m

+ 12Cn
ij

oLnkHol;m − 9Cn
ij

o
;kLnlHom − 9SijnLklH

n
m) = 0

the general case, were given by Günther [28] and independently by Cheva-
lier [15] for Ai = C = 0. McLenaghan [39] obtained Condition V when
Rij = 0. Subsequently Wünsch [49] gave it when Ai = 0. Condition V, in
the general case, was found by McLenaghan [40]. Condition VI was obtained
by Anderson and McLenaghan [1]. Condition VII for the self-adjoint equa-
tion has been given by Rinke and Wünsch [44]. However, it is too lengthy
to be given here.

4. Consequences of the necessary conditions

If Rijkl = 0, (Minkowski space) and if Ai = 0, Condition I implies
that C = 0. For this reason no non-trivial Huygens equations of the form
2u+Cu = 0, can be constructed in Minkowski space. This fact may explain
why it took considerably longer to find a counter-example to Hadamard’s
conjecture for n = 4 than for n = 6, 8, . . . .

If Rijkl = 0, the Conditions I to III imply that a Huygens equation
is equivalent to the wave equation (1.2) with m = 2. This is the result
of Mathisson already described in Section 1. The proof depends on the
following lemma [28]:

Lemma 4.1. If

HikHj
k −

1

4
gijHklH

kl = 0 , (4.1)

then (1.1) is equivalent by a transformation (bc) to the conformally invariant
equation

2u +
1

6
Ru = 0 . (4.2)



68 S.R. Czapor, R.G. McLenaghan

Proof. The left hand side of (4.1) may be interpreted as the energy mo-
mentum tensor of the “Maxwell field” Hij. It is known that the energy
momentum tensor vanishes if and only if the Maxwell field vanishes. (See
Mathisson [38] for a proof.) Thus it follows from (1.8) that the one-form
A ≡ Aidxi is closed and locally exact. Thus there exists a function α
such that A = dα. It follows that for the transformation (bc) defined
by λ = exp(−α/2), one has Ai = 0, and hence from Condition I that
C = R/6.

Hadamard’s problem is solved in the case that (M,g) is conformally
related to an empty space (Rij = 0) (vacuum or Ricci flat) by the following
result [39]:

Theorem 4.1. The equation (1.1) on a conformally empty space (M,g) is
a Huygens equation if and only if it is equivalent to the equation

2u = 0 , (4.3)

on a plane wave space with metric given by (1.23).

Remark 4.1. It should be noted that the curvature scalar R vanishes iden-
tically for all plane wave spaces. Furthermore, the plane wave metrics (1.22)
or (1.23) are conformally related to empty plane wave metrics which
for (1.23) satisfy e = 0. In particular Theorem 4.1 holds when Rij = 0.
This result has important consequences in General Relativity.

Progress on removing the restriction on the Ricci tensor required by The-
orem 4.1 has been difficult. The theorem suggests a revision of Hadamard’s
conjecture that would state that any equation (1.1) is a Huygens equation
if and only if it is equivalent to the wave equation 2u = 0, on a plane wave
space with metric (1.23). Such a result has been proved in several important
cases which will be described in the sequel. However, the existence of an
apparently new non-self-adjoint Huygens equation not equivalent to (4.3) on
a plane wave space, and which will be presented at the end of this paper,
shows that the revised conjecture, like the original one, is not true in general.

The approach used to prove these results is to consider separately each of
the five possible Petrov types [24,43] of the Weyl conformal curvature tensor
Cijkl of the background space. This is a natural approach since Petrov type
is invariant under a general conformal transformation. The possible Petrov
types and their characterization are given in the table below.

The vectors l and n in the table below, called principal null vectors (pnv),
satisfy

gij l
ilj = gijn

inj = 0 . (4.4)
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Petrov type Equations satisfied by Cijkl

I l[iCj]mn[kll]l
mln = 0

II l[iCj]mnklmln = 0

D l[iCj]mnklmln = n[iCj]mnknmnn = 0

III l[iCj]mkll
m = 0

N Cijkll
l = 0

— Cijkl = 0

For type I there are four such vectors which satisfy the equation (each null
vector is said to be simple in this case), in type II three (one repeated and
two simple), in type III two (one repeated and one simple), in type D two
repeated, and in type N one repeated null vector. It is worth noting that the
Weyl tensor corresponding to the plane wave metric (1.23) is Petrov type N
or —.

We also need an invariant classification for the Maxwell tensor Hij . It
is said to be singular if there exists a null vector li such that Hijl

j = 0, and
non-singular if l[iHj]kl

k = 0. Such a null vector is called a principal null
vector of the Maxwell tensor. A pnv of the Maxwell tensor whose direction
coincides with the direction of a pnv of the Weyl tensor is said to be aligned.

The conjecture has been proved for type N (the most degenerate) and
type III. It has been proved for type D for the conformally invariant equa-
tion (4.2). A partial result for the non-self-adjoint equation on type D back-
ground spaces has been found. Some preliminary results have been obtained
for type II for the conformally invariant equation. The details of these results
are given in the following theorems. However, a non-self-adjoint Huygens
equation has been found on a type D background space which is not equiva-
lent to (4.3) on a plane wave space. Thus the revised conjecture is not true
in general.

Theorem 4.2. An equation (1.1) on a Petrov type N background space is
a Huygens equation if and only if it is equivalent to the wave equation (4.3)
on a plane wave space with metric (1.23).

This theorem is due to Carminati and McLenaghan [11] for the case of the
conformally invariant equation (4.2) and to McLenaghan and Walton [41]
for the non-self-adjoint equation (1.1).

Theorem 4.3. There exist no Petrov type III background spaces for which
the equation (1.1) is a Huygens equation.
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This theorem is due to Carminati and McLenaghan [13] and Czapor, McLe-
naghan and Sasse [23] for the case of the conformally invariant equation (4.2)
and to Anderson, McLenaghan and Walton [3] and Anderson, McLenaghan
and Sasse [2] for the non-self-adjoint equation (1.1).

Theorem 4.4. There exists no Petrov type D space on which the conformally
invariant wave equation (4.2) is a Huygens equation.

This theorem is due to Carminati and McLenaghan [12], Wünsch [51], and
McLenaghan and Williams [42].

Theorem 4.5. Let (1.1) be any non-self-adjoint equation on a Petrov type
D background space. If the Maxwell tensor corresponding to Ai is singular
and its principal null direction is aligned with that of one of the repeated
principal null directions of the Weyl tensor, then (1.1) is not a Huygens
equation.

This theorem is due to Chu, Czapor and McLenaghan [16].

Theorem 4.6. The validity of Huygens’ principle for the conformally in-
variant scalar wave equation (1.1) on a Petrov Type II space implies that
the repeated principal null congruence of the Weyl tensor defined by the null
vector field li is geodesic, shear free and hypersurface orthogonal; that is

li;jl
j = fli , l(i;j)l

i;j =
1

2
(l;il

i)2 , l[i;jlk] = 0 .

This theorem is due to Carminati, Czapor, McLenaghan and Williams [14].
We now give an outline of the proofs of the above theorems.

1. Select a null frame (l, n,m,m) such that l (and n) is (are) repeated
principal null vector field(s) of the Weyl tensor.

2. With the help of the NPspinor package [22] in the computer algebra
system Maple, express the Conditions II to VII in terms of the NP
spin coefficients and frame components of the tensors Hij, Cijkl, Lij,
Sijk, . . . using a two-component spinor calculus.

3. Use the remaining freedom in the choice of the null frame, the confor-
mal freedom, and the trivial transformation (bc) to simplify as much
as possible the system of equations obtained by Step 2.

4. Obtain the integrability conditions for the system of equations result-
ing from Step 3, the NP field equations, and the NP Bianchi identities
with the help of the NP package [21] in Maple.
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5. If necessary use Maple’s Groebner package [19,20] to analyze the sys-
tem of polynomial equations resulting from Steps 4 and 5. Maple’s
debever package is used if integration of Cartan’s first structural equa-
tions is required.

The details of the proofs may be found in the cited papers.

5. Example of new non-self-adjoint Huygens equation

In this section we exhibit an apparently new example of a non-self-
adjoint Huygens equation that is non-trivial and not equivalent to wave
equation (4.3) on a plane wave space. Consider a background space with
metric

ds2 =
2dudv

[

1 − 1
8(R + β)uv

]2 −
2dzdz

[

1 + 1
8(R − β)zz

]2 , (5.1)

where R and β are any real constants. Consider also the one-form

A =
1

2
(H3 + H3)(1 − αuv)−1(vdu − udv)

+
1

2
(H3 − H3)(1 + δzz)−1(zdz − zdz) , (5.2)

where

|H3| =

(

βR

60

)
1

2

, α =
1

8
(R + β) , δ =

1

8
(R − β) . (5.3)

Then the equation
2u + Ai∇iu + Cu = 0 , (5.4)

where

C =
1

2
Ai

;i +
1

4
AiAi +

1

6
R , (5.5)

satisfies Huygens’ principle if

R/β = 3/5 . (5.6)

The Huygens’ property of (5.4) may be verified by showing that
Hadamard’s necessary and sufficient condition (2.8) is satisfied. The fact
that (5.4) is not a trivial equation follows from the property that the Weyl
tensor corresponding to the metric (5.1) vanishes if and only if the Ricci
scalar R = 0. However, the condition (5.6) shows that Rβ 6= 0 which also
implies that dA 6= 0. Further, (5.4) is not equivalent to (4.3) on a plane wave
space, since the Weyl tensor of (5.1) is Petrov type D since R 6= 0, while
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the Weyl tensor of the plane wave metric (1.23) is Petrov type N. Recall
that Petrov type is a conformally invariant property. We thus claim that the
equation (5.4) on a background space with metric (5.1), vector field (5.2),
and C given by (5.5) is a non-trivial Huygens equation if (5.6) is satisfied.
Moreover, it is not equivalent to the equation (4.3) on a plane wave space.
The details of the proof of our claim will be published elsewhere.

6. Conclusion

We have illustrated how Mathisson’s strategy together with the Petrov
classification has been used to solve Hadamard’s problem for the equa-
tion (1.1) for n = 4. The problem has been completely solved for the de-
generate Petrov types III and N. It has also been completely solved for the
conformally invariant wave equation (4.2) for Petrov type D. However, the
problem remains open for (1.1) on type D background spaces. The existence
of a non-trivial, non-self-adjoint Huygens equation which is not equivalent
to the wave equation on a plane wave space, shows that the solution may be
richer than previously thought. Some preliminary results have been obtained
for the conformally invariant equation for type II. However, the complete so-
lution of the equations for type II and those arising from the generic case
of type I appear intractable even with the use of powerful computer algebra
packages that helped solve the more degenerate cases.

It thus seems that Mathisson’s strategy, conceived almost seventy years
ago, has been exploited to its fullest possible extent. Further progress on
the solution of Hadamard’s problem will depend on a new approach. Such
an approach might involve a deeper analysis of Hadamard’s necessary and
sufficient condition on the entire null conoid rather the study of the (infinite)
sequence of necessary conditions that arise from it at the vertex which is the
essence of Mathisson’s approach.

The second author wishes to express his appreciation to Professor
Andrzej Trautman for his invitation to attend the Mathisson conference
and for the financial support provided. The research was supported in part
by Discovery Grants from the Natural Sciences and Engineering Research
Council of Canada (SRC, RGM).
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