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1. Introduction

The work presented in this talk is part of a long-time project aimed at
the detailed quantitative description of the process of relaxation to equilib-
rium for nonlinear wave equations defined on spatially unbounded manifolds.
By equilibrium we mean here a stable stationary solution, like a soliton,
a black hole, or just a flat space. The convergence to these solutions occurs
through a mechanism of radiating an excess energy to infinity. For a large
class of physically interesting systems the late stages of this process are uni-
versal: for intermediate times the convergence has the form of exponentially
damped oscillations (called quasinormal modes) and asymptotically it has
the form of polynomial decay (called a tail). This very last stage of the
relaxation process, the tail, is the subject of my talk.

The presentation of this talk at the conference devoted to Mathisson is
justified by the fact our results touch upon Huygens’ principle, one of the
main subjects of Mathisson’s mathematical interests. Recall that a wave
equation is said to satisfy Huygens’ principle if: (i) the solution at a point P
depends only on the initial data at the intersection of the past light cone of
P with the Cauchy hypersurface or, equivalently, (ii) the solution vanishes
at all points which cannot be reached from the initial data by a null geodesic
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(i.e., there is no tail). A prototype equation satisfying Huygens’ principle is
the ordinary wave equation in d + 1 dimensional Minkowski spacetime for
odd d ≥ 3. Actually, according to Hadamard’s conjecture [1] this is the only
(modulo trivial transformations) huygensian linear second-order hyperbolic
equation of the form

gµν(x)∇µ∇νφ+Aµ(x)∇µφ+B(x)φ = 0 . (1)

Mathisson proved this conjecture in the case of four dimensional Minkowski
spacetime [2]. Counterexamples to Hadamard’s conjecture, which have been
found later (see [3] and Roy McLenaghan’s talk at this conference), do not
change the fact that Huygens’ property is a very rare and unstable phe-
nomenon. Thus, it is natural to ask if there are perturbations of the free
wave equation which preserve Huygens’ property approximately, in the sense
that the tail which is left behind the wave front is very small. The existence
of such special perturbations in higher even dimensions is a byproduct of
our studies of tails.

2. Model and assumptions

We consider equations of the form

2φ+ V (x)φ+N(φ,∇φ, x) = 0 , 2 = ∂2
t − ∆ , (t, x) ∈ Rd+1 , (2)

for spherically symmetric smooth initial data with compact support. Since
we want the free part to satisfy Huygens’ property, we restrict ourselves to
odd spatial dimension d ≥ 3. Apart from obvious mathematical motivations,
there are at least two physical reasons for studying higher dimensions d > 3.
First, for linear wave equations higher dimensions are equivalent to higher
spherical harmonics. This follows from the identity

(

∂2
t − ∂2

r − d− 1

r
∂r

)

φ =
1

rl

(

∂2
t − ∂2

r − 2

r
∂r +

l(l + 1)

r2

)

(rlφ) ,

l = (d− 3)/2 , (3)

which relates the l = 0 radial wave operator in d space dimensions with
the radial wave operator in three space dimensions for the l-th spherical
harmonic with l = (d− 3)/2.

Second, some geometric wave equations in 3 + 1 dimensions are equiva-
lent to scalar wave equations in d + 1 dimensions for d > 3. For example,
equivariant wave maps from R3+1 into S3 satisfy the following equation

(

∂2
t − ∂2

r − 2

r
∂r

)

ψ +
sin(2ψ)

r2
= 0 , (4)
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which, after substitution ψ = rφ, becomes the nonlinear scalar wave equa-
tion in 5 + 1 dimensions

(

∂2
t − ∂2

r − 4

r
∂r

)

φ+
4

3
φ3 + higher order terms = 0 . (5)

3. Tools

In this section we recall two elementary tools from the theory of linear
wave equations. The first tool is a formula for the spherically symmetric
solution of the free wave equation 2φ = 0 in d+ 1 dimensions (hereafter we
shall use l = (d− 3)/2 instead of d):

φ(t, r) =
1

r2l+1

l
∑

k=0

2k−l(2l − k)!

k!(l − k)!
rk

(

a(k)(t− r) − (−1)ka(k)(t+ r)
)

. (6)

This solution, which is a superposition of ingoing and outgoing waves, is
parameterized by a single function a(r) uniquely determined by initial data
(the superscript in round brackets denotes the k-th derivative).

The second tool is the Duhamel formula for the solution of the inhomo-
geneous free wave equation 2φ = F (t, r) with zero data

φ(t, r) =
1

2rl+1

t
∫

0

dτ

t+r−τ
∫

|t−r−τ |

ρl+1Pl(µ) F (τ, ρ)dρ ,

µ =
r2 + ρ2 − (t− τ)2

2rρ
, (7)

where Pl(µ) is the Legendre polynomial of degree l. This expression can be
easily obtained from the standard Green’s function formula by integrating
out the angular variables [4]. In terms of null coordinates u = τ − ρ and
v = τ + ρ the Duhamel formula (7) takes a more convenient form

φ(t, r) =
1

2l+3rl+1

t+r
∫

|t−r|

dv

t−r
∫

−v

(v − u)l+1Pl(µ)F (u, v)du ,

µ =
r2 + (v − t)(t− u)

r(v − u)
. (8)

The formulae (6) and (8) will be used repeatedly below.
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4. Linear tails

For the clarity of presentation we first consider the linear equation with
a potential

2φ+ λV φ = 0 , (φ(0, r), ∂tφ(0, r)) = (f(r), g(r)) . (9)

The prefactor λ, introduced for convenience, will be assumed small and used
as a perturbation parameter. In order to determine the long-time behavior
of φ(t, r) we define the perturbation series

φ = φ0 + λφ1 + λ2φ2 + . . . , (10)

where φ0 satisfies initial data (9) and all higher φn have zero data. Substi-
tuting this series into equation (9) we get the iterative scheme

2φ0 = 0 , 2φ1 = −V φ0 , 2φ2 = −V φ1 , etc . , (11)

which can be solved recursively using the formulae (6) and (8). Assuming
that V (r) ∼ r−α (α > 2) for r → ∞, we showed in [5] that the leading order
asymptotic behavior at timelike infinity (fixed r and t→ ∞) is given by

φ1(t, r) =
C(l, α)

tα+2l

[

A+ O
(

1

t

)]

, (12)

where1

C(l, α) = − 2α+2l−1

(2l + 1)!!

(

α− 3

2

)l
(α

2

)l

and A =

+∞
∫

−∞

a(u) du . (13)

The constant A is the only trace of initial data. The expression (12) was
first derived by Ching et al. [6] who used Fourier transform methods.

We claim that the first iterate provides a good approximation of the
entire tail if λ is sufficiently small, that is

φ(t, r) − λφ1(t, r) ∼ O(λ2)t−(α+2l) . (14)

This basically follows from the fact that all higher-order iterates φn(t, r)
decay in the same manner (or faster) as φ1(t, r). Of course, the main issue is

1 Here we use the notation:

x
0 := 1, x

k := x · (x − 1) · · · · · (x − (k − 1)), k > 0 ,

x
0 := 1, x

k := x · (x + 1) · · · · · (x + (k − 1)), k > 0 .
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whether the perturbation series is convergent; for l = 0 (i.e., in three space
dimensions) this was proved in [7] but for higher l the problem is open.
Note, however, that for practical purposes it is sufficient that the series is
asymptotic to the solution.

The numerical verification of (14) shows perfect agreement with analytic
predictions [5]. We remark that numerical simulations of tails are not quite
trivial even in the radial case because discretization errors generate artificial
tails which might mask the true behavior. To eliminate such artifacts one has
to use high-order finite difference schemes. In addition, quadruple precision
is needed to suppress the accumulation of round-off errors during long-time
simulations. For these reasons the simulations of tails are computationally
expensive.

5. Nonlinear tails

In this section we consider equation (2) without a potential. For sim-
plicity, we take a pure power nonlinearity with an integer exponent (p ≥ 3
if l = 0 and p ≥ 2 if l ≥ 1) (the generalization to other nonlinearities is
straightforward)

2φ− φp = 0 , (φ(0, r), ∂tφ(0, r)) = (εf(r), εg(r)) . (15)

This time the amplitude of initial data ε plays the role of a small parameter
in the perturbation series:

φ = εφ0 + ε2φ1 + ε3φ2 + . . . . (16)

Substituting (16) into equation (15) we get the iteration scheme

2φ0 = 0 , 2φp = φp
0 , etc. (17)

As above, we get φ0 using the formula (6) and then evaluate φp using the
Duhamel formula (8). In the limit of timelike infinity we obtain [8]

φp(t, r) =
C̃(l, p)

t(l+1)p−1

[

Ã+ O
(

1

t

)]

, (18)

where

C̃(l, p) = (−1)l
2(l+1)(p+1)−1

(2l + 1)!!
[(l + 1)(p − 1) − 2]l ,

Ã =

+∞
∫

−∞

[a(l)(u)]p du . (19)

The remarks given above in the linear case apply verbatim to the nonlinear
case as well; in particular the perturbation series (16) is known to converge
for l = 0 [7] and is at least asymptotic to the full solution for l > 0.
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6. Competition between linear and nonlinear tails

The most interesting situation occurs when both the potential and the
nonlinearity are present in equation (2). Then, each of these terms produces
its own tail:

linear tail ∼ t−(α+2l) and nonlinear tail ∼ t1−(l+1)p . (20)

Clearly, the tail with slower decay rate is dominant asymptotically, that is

φ(t, r) ∼ t−γ , γ = min{α + 2l, (l + 1)p− 1} . (21)

For l = 0 this result (without a coefficient) was first proved by Strauss and
Tsutaya [9].

To give an example of the competition of linear and nonlinear tails, let
us consider the Skyrme model. Under a spherical symmetry reduction (coro-
tational ansatz), this model reduces to the single nonlinear wave equation
for the function F (t, r)

∂t(w∂tF )− ∂r(w∂rF )+ sin(2F )+ sin(2F )

(

sin2 F

r2
+(∂rF )2 − (∂tF )2

)

= 0 ,

(22)
where w = r2 +2 sin2 F . Regular finite energy solutions of (22) must satisfy
the boundary conditions F (t, 0) = 0 and F (t,∞) = mπ, where an integer m
has the interpretation of the topological degree of the solution. For m = 1
equation (22) has a regular static solution S(r) called the skyrmion. This
solution is linearly stable and plays the role of a global attractor, that is,
every solution starting from smooth finite energy initial data of degree one
remains globally regular for all times and asymptotically converges to S(r).
The perturbation φ(t, r) =

√
w(F (t, r) − S(r))/r2 satisfies the equation

(

∂2
t − ∂2

r − 4

r
∂r

)

φ+ V (r)φ+
4

3
φ3 + higher order terms = 0 , (23)

where the potential V (r) has no bound states and falls off as r−6 for r → ∞.
For this equation we have d = 5 (l = 1), α = 6 and p = 3, hence from (20)

linear tail ∼ t−8 and nonlinear tail ∼ t−5 . (24)

Thus, the nonlinear tail is dominant [10]. This example shows that one
has to be cautious in drawing conclusions about the asymptotic behavior
of solutions of nonlinear wave equations on the basis of linear perturbation
analysis — even for small amplitude solutions the nonlinear effects can be
dominant.
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7. Anomalous tails

An advantage of our approach, in contrast to decay estimates in the form
of inequalities, is that we control the coefficient of the leading order term
of the tail. This allows us to identify those exceptional cases in which this
coefficient vanishes and the decay is faster. We shall refer to such tails as
anomalous.

Let us first consider the linear case with the pure inverse power potential
near infinity, that is V (r) = λr−α for r > R. Then, it follows from (13) that

C(l, α) ∝
(

α−3
2

)l
= 0 if α is an odd integer ≤ 2l + 1, hence there is no tail

in the first order. This means that the system

2φ0 = 0 , 2φ1 = −V φ0 , (25)

is huygensian. In order to find the tail in this exceptional case we need to
solve the second iteration equation 2φ2 = −V φ1 via the Duhamel formula.
After a long calculation (which requires the asymptotic expansion of φ1 at
null infinity) we get (see [5] for the details)

φ(t, r) ≈ λ2φ2(t, r) = λ2 D(l, α)

t2(α+l−1)

[

A+ O
(

1

t

)]

, (26)

where the coefficient D(l, α) is given by a complicated but explicit expression
(see Eq. (23) in [5]).

Next, consider the pure power nonlinearity 2φ = φp. It follows from (19)

that C̃(l, p) ∝ [(l + 1)(p − 1) − 2]l = 0 if p = 2 and l ≥ 1. Thus, in higher
even dimensions the first order tail vanishes for the quadratic nonlinearity.
This implies that the system

2φ0 = 0 , 2φ1 = φ2
0 , (27)

is huygensian. As before, the leading order behavior of the tail can be
obtained by solving the second order equation 2φ2 = 2φ0φ1 via the Duhamel
formula. The result (see [8] for the details) is

φ(t, r) ≈ ε3φ2(t, r) ∼ ε3
c(l)

t3l+1
,

c = (−1)l
23l

2l(2l + 1)

∞
∫

−∞

a(l−1)(η)[a(l)(η)]2dη . (28)

Note that quadratic nonlinearities occur frequently in nonlinear perturbation
theory so anomalous tails are in fact quite common. As an example, consider
the Yang–Mills field in four dimensions with the SO(3) gauge group, so that
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the potential Aα(x) is the skew-symmetric 3 × 3 matrix Aij
α (x). For the

spherically-symmetric ansatz

Aij
µ (x) =

(

δj
µx

i − δi
µx

j
)

φ(t, r) , (29)

the Yang–Mills equation ∂αF
αβ + [Aα, F

αβ ] = 0, where Fαβ = ∂αAβ −
∂βAα + [Aα, Aβ ], reduces to the scalar semilinear wave equation in 5 + 1
dimensions

(

∂2
t − ∂2

r − 4

r
∂r

)

φ+ 3φ2 + r2φ3 = 0 . (30)

The quadratic term in (30) produces an anomalous tail (28) which is of the
same order, O(ε3), as the standard tail (18) produced by the cubic term.
Combined together they give (see [11] for the derivation)

φ(t, r) ≈ ε3φ2(t, r) ∼ ε3 c t−4 ,

c = −8

+∞
∫

−∞

a(u)a′(u)
2
. (31)

Finally, we remark that although our analysis of tails was restricted to
the flat background, many conclusions carry over to more general asymp-
totically flat spacetimes, in particular black hole spacetimes. For example,
applying similar methods one can show that the massless scalar field prop-
agating outside a higher even-dimensional Schwarzschild black hole decays
anomalously fast as φ ∼ t−(3d−5) [5]. This suggests that the problem of
asymptotic stability of the Schwarzschild black hole is easier in higher di-
mensions.

I would like to thank Professor Andrzej Trautman for inviting me to give
this talk at the Banach Center. This research was supported in part by the
MNII grants 1PO3B01229 and SPB/189/6 PR EU/2007/7.
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