
Vol. 1 (2008) Acta Physica Polonica B Proceedings Supplement No 1

CLASSICAL AND QUANTUM SPINS
IN CURVED SPACETIMES∗

Alexander J. Silenko

Institute of Nuclear Problems, Belarusian State University

Minsk 220030, Belarus

(Received February 5, 2008)

A comparative analysis of the Mathisson–Papapetrou and Pomeransky–
Khriplovich equations is presented. Motion of spinning particles and their
spins in gravitational fields and noninertial frames is considered. The an-
gular velocity of spin precession defined by the Pomeransky–Khriplovich
equations depends on the choice of the tetrad. The connection of such
a dependence with the Thomas precession is established. General proper-
ties of spin interactions with gravitational fields are discussed. It is shown
that dynamics of classical and quantum spins in curved spacetimes is iden-
tical. A manifestation of the equivalence principle in an evolution of the
helicity is analyzed.

PACS numbers: 04.20.Cv, 04.60.–m, 95.30.Sf

1. Introduction

Spin dynamics in curved spacetimes is an important part of spin physics.
Spin effects in gravitational fields and noninertial frames are important
not only for particles but also for gyroscopes and even celestial bodies.
Many such effects can be discovered and investigated in cosmic experiments.
Therefore, a necessary theoretical description of the spin dynamics in curved
spacetimes should be carries out.

Pioneering calculations of the spin effects in gravitational fields were
made soon after the creation of the general relativity [1–3]. However, an in-
vestigation of mutual influence of particle and spin motion in curved space-
times was started from the excellent work by Mathisson [4]. Another inves-
tigation of this problem was performed by Pomeransky and Khriplovich [5].
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We present a comparative analysis of different equations of motion of
spinning particles and their spins, discuss their connection with the equiv-
alence principle, and investigate specific effects. In the next section, we in-
troduce the Mathisson–Papapetrou equations (MPE). In Sec. 3, we briefly
discuss general properties of spin interactions with gravitational fields. Next
section is devoted to the comparison between the MPE and Pomeransky–
Khriplovich equations (PKE). Equations of spin motion in stationary space-
times are discussed in Sec. 5. In Sec. 6, the spin effects in classical and
quantum gravity are compared. A manifestation of the equivalence principle
in an evolution of the helicity in gravitational fields and noninertial frames is
analyzed in Sec. 7. Finally, in Sec. 8 we discuss previously obtained results
and summarize the main results of the work.

Throughout the work tetrad indices are designated by first Latin let-
ters. Greek indices and other Latin indices run 0, 1, 2, 3 and 1, 2, 3, respec-
tively. The metric signature (+,−,−,−) is chosen. We use the designations
[. . . , . . . ] and {. . . , . . . } for commutators and anticommutators, respectively.
We use the term “tetrad vector” for vectors formed from tetrad components.

2. Mathisson–Papapetrou equations

The famous MPE first found by Mathisson [4] and then rediscovered by
Papapetrou [6] describe dynamics of a classical spinning particle and their
spin in curved spacetimes. All multipole moments of an extended body in
a gravitational field was taken into account by Dixon [7]. The explicit form
of the MPE is

Dpµ

ds
= −

1

2
Rµ

ναβu
νSαβ , (1)

DSµν

ds
= pµuν − pνuµ , (2)

where uν and pν are the four-velocity and four-momentum of the spinning
particle, respectively, Rµ

ναβ is the Riemann curvature tensor of the spacetime,

and D/(ds) means the covariant derivative with respect to the interval ds.
These equations should be supplemented with the condition [4, 8]

Sµνuν = 0 , (3)

or [7, 9, 10]
Sµνpν = 0 . (4)

The MPE characterize the pole–dipole approximation, when multipole
moments of higher orders are neglected. These equations predict the mu-
tual influence of particle and spin motion. In particular, spinning particles
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undergo an additional force which is similar to the Stern–Gerlach force in
electrodynamics. As a result, spinning particles do not move on geodesics
in curved spacetimes.

In a zero approximation, one can neglect the mutual influence of par-
ticle and spin motion. In this approximation, the spin tensor is parallel
transported in the spacetime and the MPE take the form

Dpµ

ds
= 0 , (5)

DSµν

ds
= 0 , (6)

pµ = mcuµ , (7)

where m is the mass of the particle.

3. General properties of spin interactions with gravitational fields

General properties of interactions of classical spin with gravitational
fields can be obtained, when the mutual influence of particle and spin motion
is neglected.

The curvature of spacetime conditions a precession of moving spinning
particles and gyroscopes (geodetic effect [1, 2]). Additional rotation of the
spin in a gravitational field of a rotating body is caused by the frame dragging
(Lense–Thirring effect [3]). This effect results in appearing an additional ac-
celeration similar to the Coriolis one and an additional precession of satellite
orbits and the spin. Similar effects take place in a rotating frame. In the
nonrelativistic approximation, resulting motion of the spin is given by [11]

dS

dt
= Ω × S , Ω =

3GM

2c2r3
(r × v) +

G

c2r3

[

3(J · r)r

r2
− J

]

, (8)

where M and J are the mass and angular moment of the central body and
v is the velocity of spinning test particle. As was mentioned in Ref. [11],
Eq. (8) is consistent with approximate Mathisson–Papapetrou equation (6).

Eq. (8) results in the conclusion that an anomalous gravitomagnetic mo-
ment (AGM) and a gravitoelectric dipole moment (GDM) are equal to zero.
Indeed, the angular velocity of spin rotation depends on neither the mass
nor the spin. Therefore, the relation between the torque dS/dt and the spin
S is the same for all particles/gyroscopes. This is an explicit manifesta-
tion of the absence of the AGM. The equality of angular velocities of spin
rotation of all particles in the stationary spacetime created by the rotating
body is another manifestation of the absence of the AGM. Evidently, the
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latter property is also valid for spinning particles (gyroscopes) in the ro-
tating frame. The absence of the GDM results from the fact that the spin
of particle at rest does not interact with a static gravitational field if tidal
forces can be neglected.

It is not evident whether the above mentioned conclusion remains valid
for quantum particles. This problem was much-discussed (see Ref. [12] and
references therein). Nevertheless, an explicit solution of the problem was
obtained many years ago by Kobzarev and Okun [13]. In this work, gravi-
tational interactions of spin-1/2 particles have been considered and impor-
tant relations for gravitational form factors at zero momentum transfer have
been derived. It was proved that gravitational and inertial masses are equal
(f1 = g1 = 1), any gravitomagnetic moment is “normal” (i.e. the AGM
is equal to zero (f2 = 1)), and the GDM is equal to zero (f3 = 0). The
generalization of these properties to arbitrary-spin particles was made by
Teryaev [14].

The absence of the GDM results in the absence of spin-gravity coupling

W ∼ g · S, (9)

where g is the gravitational acceleration.
The relations obtained by Kobzarev and Okun lead to equal frequencies

of precession of quantum (spin) and classical (orbital) angular momenta and
the preservation of helicity of Dirac particles in gravitomagnetic fields (i.e.
the fields defined by the components gi0 of the metric tensor, see Ref. [14]
and references therein). Any reference frame characterized by the nonzero gi0

possesses these properties. In particular, one can mention the gravitational
field of massive rotating body and the noninertial rotating frame.

Thus, the general properties of spin interactions with gravitational fields
are the same for classical and quantum particles.

Similarity of Eqs. (5) and (6) conditions conformity of particle and spin
dynamics in the general relativity. The equality of angular velocities of spin
rotation of all particles is similar to the independence of particle accelerations
in curved spacetimes on their masses. Therefore, the above discussed general
properties of spin interactions with gravitational fields can be considered as
the manifestations of the equivalence principle in spin-gravity interactions
(see Ref. [14]).

4. Comparison between Mathisson–Papapetrou and

Pomeransky–Khriplovich equations

There are two possible methods used for the derivation of the MPE and
PKE [5]. First method consists in a search for appropriate covariant equa-
tions. This method was utilized for the derivation of classical equations
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of spin motion in electromagnetic fields [15–17]. The Thomas–Bargmann–
Michel–Telegdi (T-BMT) equation [15, 16] and the Good–Nyborg equation
(GNE) [17] describe spin dynamics in uniform and nonuniform electromag-
netic fields, respectively. The same method was applied by Mathisson [4] and
Papapetrou [6] for obtaining equations of spin motion in curved spacetimes.

Second method consists in a deduction of equations on the basis of some
physical principles without an attempt to obtain covariant final equations.
Pomeransky and Khriplovich [5] used this method for the derivation of equa-
tions of spin motion in electromagnetic fields with allowance for terms of the
first and second orders in spin. This method is based on the fact that the
three-component spin defined in a particle rest frame is a noncovariant quan-
tity [5]. The use of covariant equations may be possible if coordinates are
redefined [5]. The validity of the “noncovariant” [5] approach was confirmed
with a comparison between the GNE, PKE for the electromagnetic field [5],
and the equation deduced in Refs. [18, 19] from the Hamiltonian for spin-1
particles in the electromagnetic field [20]. It was shown [18, 19] that the
Foldy–Wouthyusen (FW) transformation followed by the semiclassical tran-
sition results in the equation of spin motion which agrees with the PKE but
contradicts to the GNE. This is an indirect confirmation of the noncovariant
approach which was also used [5] for description of gravitational interactions.

To find a connection between MPE and PKE, we use the results obtained
by Chicone, Mashhoon, and Punsly [21]. The relation between the four-
momentum and four-velocity has the form

pµ = mcuµ + Eµ , (10)

where the order of magnitude of Eµ is given by

Eµ ∼
1

mc
SµνDpν

ds
. (11)

The additional four-force is DEµ/dτ , where τ is the proper time. This four-
force is of the second order in the spin [21]. The approximate equation of
the first order in the spin resulting from Eq. (1) is [21]

mc
Duµ

ds
= −

1

2
Rµ

ναβu
νSαβ . (12)

Eq. (8) and the PKE unambiguously show that the spin dynamics de-
pends on derivatives of the metric tensor. The right hand side of Eq. (2)
defined by Eqs. (1), (10), (11) is of the order of

pµuν − pνuµ ∼
1

mc
Rλαβγu

αuνSµλSβγ . (13)



92 A.J. Silenko

This quantity is much less than terms defining the spin motion in the
PKE [5], when the weak-field approximation is used. In this approxima-
tion

|gµν − ηµν | = |hµν | ≪ 1 , (14)

where the tensor ηµν characterizes the Minkowski spacetime. In addition,
the right hand side in Eq. (13) is of the second order in the spin tensor.
Therefore, the correction to Eq. (6) is rather small. When terms of the first
order in the spin are retained, the MPE reduce to Eqs. (6), (12).

To derive the corresponding equation for the spin (pseudo)vector Sµ in
the same approximation, we can use the known connection between the spin
vector and the spin tensor [22] and Eq. (12). When only terms of the first
order in the spin are taken into account, the equation for the spin vector is
given by

DSµ

ds
= 0 . (15)

This is the initial equation used by Pomeransky and Khriplovich [5].
Therefore, we can conclude that the spin dynamics predicted by the MPE
and PKE is the same in the first-order approximation in the spin. A possible
difference between two approaches can be caused by second-order terms in
the spin (including quadrupole interactions). Such terms was calculated in
Ref. [5] in the framework of quantum theory. In the present work, we confine
ourselves to the discussion of first-order spin effects.

Eq. (15) should be supplemented with the orthogonality condition

Sµuµ = 0 . (16)

The method developed by Pomeransky and Khriplovich [5] is based on
the equations of motion of particles and their spins in the zero approximation
[Eqs. (5) and (15), respectively]. In Ref. [5], the former equation was written
for the four-velocity and the tetrad formalism was used. The equations
for the tetrad components of the four-velocity ua = eaµu

µ and the four-
component spin Sa = eaµS

µ are [5]

dua

ds
= γabcu

buc , (17)

dSa

ds
= γabcS

buc . (18)

Here eaµ is the vierbein and

γabc = eaµ;νe
µ
b e

ν
c = −γbac

are the Ricci rotation coefficients [23].
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Evidently, these equations are similar to the equations of motion of par-
ticles with zero anomalous magnetic moment (g = 2) and their spins in an
electromagnetic field:

duµ

dτ
=

e

mc
Fµνu

ν ,
dSµ

dτ
=

e

mc
FµνS

ν , (19)

where Fµν is the electromagnetic field tensor.
Therefore, the following correspondence takes place [5]:

e

mc2
Fab ↔ γabcu

c . (20)

The antisymmetric electromagnetic field tensor has six independent com-
ponents and is defined by the electric and magnetic fields:

Fab ↔ (E,B) . (21)

One can similarly define the gravitoelectric and gravitomagnetic fields:

e

mc
E ↔ E ,

e

mc
B ↔ B , cγabcu

c ↔ (E ,B) . (22)

An important difference between the electromagnetic and gravitational in-
teractions consists in the fact that γabcu

c is not a tensor. Explicit expressions
for the gravitoelectric and gravitomagnetic fields are (see Ref. [5])

Eî = c γ0icu
c , Bî = −

c

2
ê
ik̂l̂
γklcu

c , (23)

where ê
ik̂l̂

is the antisymmetric tensor with spatial components. To avoid
misleading coincidences, zero and spatial tetrad indexes are marked with
hats (except for the Ricci rotation coefficients).

The comparison with the T-BMT equation [15, 16] allows to obtain the
angular velocity of spin precession. Pomeransky and Khriplovich introduced
the three-component spin (pseudo)vector S and obtained the exact equation
of its precession [5]

dS

dt
= Ω × S , Ωî = cê

ik̂l̂

(

1

2
γklc +

uk̂

u0̂ + 1
γ0lc

)

uc

u0
, (24)

that is equivalent to

Ω =
1

u0

[

−B̂ +
û × Ê

u0̂ + 1

]

. (25)

The factor 1/u0 is caused by the transition to the differentiation with re-
spect to the world time t. The definitions of Ω in Refs. [5,25] and the present



94 A.J. Silenko

work differ in sign. When the differentiation is performed with respect to the

tetrad time (dt̂ = u0̂dt/u0), Eq. (25) coincides with the T-BMT equation
for Dirac particles (g = 2). The gravitoelectric and gravitomagnetic fields
are defined via their tetrad components. The quantity Ω characterizes the
spin precession in the world frame, while the spin S is defined in the particle
rest frame. In this connection, the dependence of Ω on the choice of the
tetrad must result from a change of the particle rest frame.

For a Schwarzschild metric, the exact expresson for Ω was obtained in
Ref. [25].

The corresponding equation of particle motion has the form

dû

dt
=
u0̂

u0

(

Ê +
û × B̂

u0̂

)

,
du0̂

dt
=

Ê · û

u0
. (26)

When the differentiation is performed with respect to the tetrad time,
Eq. (26) coincides with the Lorentz equation. Eqs. (17), (26) describe the
particle motion along geodesic lines.

Definition (23) of the gravitoelectric and gravitomagnetic fields signifi-
cantly differs from the usual one. In particular, the Pomeransky–Khriplovich
gravitomagnetic field is nonzero even for a static metric.

There is a one-to-one correspondence between the angular velocity of pre-
cession of the three-component spin and spin-dependent terms in classical [5]
and quantum [24] Lagrangians and Hamiltonians. To derive spin-dependent
corrections to classical Lagrangians, Poisson brackets was used in Ref. [5].
When classical and quantum expressions for Ω coincide, the spin-dependent
terms in classical and quantum Lagrangians/Hamiltonians derived with the
Poisson brackets and commutators, respectively, are also the same. These
terms are given by

L = L0 + Ω · S , H = H0 − Ω · S , (27)

where L0 and H0 define sums of spin-independent terms. It will be shown be-
low that Eq. (24) agrees with corresponding equations derived in the frame-
work of quantum theory. As a result, classical Lagrangians and Hamiltoni-
ans defined by Eqs. (24) and (27) must agree with corresponding quantum
Hamiltonians. Thus, the PKE are consistent with the quantum gravity at
least in the first-order approximation in the spin.

Influences of the spin on a particle trajectory in a gravitational field
predicted by the MPE and PKE significantly differ [5, 25]. It was stated in
Refs. [5,25,26] that the MPE are not consistent with Eq. (8) describing the
geodetic effect (gravitational spin-orbit interaction). In the Pomeransky–
Khriplovich approach, the consistence of motion of particles and their spins
results from Eq. (27).
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5. Equations of spin motion in stationary spacetimes

While MPE (6) is equivalent to PKE (15), general equation of spin mo-
tion (24) was obtained only in the framework of the Pomeransky–Khriplovich
approach. However, the Pomeransky–Khriplovich method needs to be gro-
unded. Eqs. (18) and (19) describing the motion of the four-component spin
vector in gravitational and electromagnetic fields, respectively, are very simi-
lar. However, there exists an important difference between the corresponding
equations for the three-component spin vector. Since the latter vector is de-
fined in the particle rest frame, the spatial components of the four-velocity
satisfying Eq. (16) are equal to zero in this frame. Such a definition of the
velocity is ambiguous because this quantity can be characterized by covari-
ant, contravariant, and tetrad vectors. A definite choice can be made due
to a local Lorentz invariance. The spacetime metric tensor locally has the
Minkowski form ηµν of special relativity in any freely-falling reference frame
including the particle rest frame (see Ref. [27]). Tetrad components of any
vector are similar to components of vectors in a flat spacetime. In particu-
lar, covariant and contravariant tetrad components of vectors are equal up to
sign. Since the spacetime interval in tetrad coordinates takes the Minkowski
form, tetrad reference frames are flat and correspond to local Lorentz frames.

The particle velocity is zero and the spacetime is flat in the particle rest
frame. In this frame, just spatial tetrad components of the particle velocity
are zero (û = 0). It is natural because any observer carries a tetrad frame
(see Ref. [28]). Corresponding covariant and contravariant components
(ui and ui, respectively) can be nonzero. Since the orthogonality condition
can be written in the form

Saua = 0 , (28)

the three-component spin is composed by spatial components of the four-
component tetrad spin at condition that û = 0. Thus, the three-component
spin is a tetrad (pseudo)vector. Such a definition of the three-component
spin was used in Refs. [5, 25].

The definition of the three-component spin as a tetrad (pseudo)vector
can be additionally justified by its consistency with the definition of the
spin operator in quantum theory. The covariant Dirac equation for spin-1/2
particles in curved spacetimes has the form

(i~γaDa −mc)ψ = 0 , a = 0, 1, 2, 3, (29)

where γa are the Dirac matrices. The spinor covariant derivatives are defined
by

Da = eµaDµ , Dµ = ∂µ +
i

4
σabΓ

ab
µ , (30)
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where Γ ab
µ = −Γ ba

µ are the Lorentz connection coefficients, σab = i(γaγb −

γbγa)/2 (see Refs. [29, 30] and references therein). Because the matrices γa

are defined in the tetrad frame, they coincide with the Dirac matrices.
To obtain the equations of motion of particles and their spins, one can

in principle use any tetrad. However, it does not mean that a choice of the
tetrad is not important. In Eq. (24), the angular velocity of spin rotation
should correspond to the quantity measured by a local observer. As a re-
sult, parameters of the definite tetrad frame carried by the observer should
be substituted into this equation. For the observer in a uniformly acceler-
ated, rotating frame, the tetrad ea transports along the observer’s world line
according to [28]

dea

dτ
= Ξea , (31)

where Ξ is the antisymmetric rotation tensor. This tensor consists of the
Fermi–Walker part ΞFW and the spatial rotation part ΞR [28]:

Ξµν = Ξµν
FW +Ξµν

R , Ξµν
FW = aµuν −aνuµ , Ξµν

R = uαωβǫ
αβµν , (32)

where aµ is the four-acceleration of the observer, ωµ is its four-rotation, and
ǫαβµν is the Levi–Civita tensor.

For the uniformly accelerated, rotating frame, the exact formula for the
orthonormal tetrad satisfying Eqs. (31), (32) was found by Hehl and Ni [31].
The corresponding vierbein has the form

e0̂0 = 1 +
a · r

c2
, e0̂i = 0 , eî0 = −g0i =

(ω × r)i

c
, eîj = δij , (33)

where δij is the Kronecker delta. Vierbein (33) is attributed to the observer
being at rest in the uniformly accelerated, rotating frame [28,31].

Since the equivalence principle predicts the equivalence of gravitational
fields and noninertial frames, the result obtained in Ref. [31] can be used
for any spacetime defined by a metric tensor with g0i 6= 0. Nonzero g0i

components are connected with the proper local three-rotation ω. In the
weak-field approximation, the generalization of the tetrad found in Ref. [31]
is given by

e0̂0 = 1 + 1
2 h00 , e0̂i = 0 , eî0 = −g0i , eîj = δij −

1
2 hij . (34)

This vierbein can also be presented in the equivalent forms

e0̂0 = 1 + 1
2 h00 , e0̂i = 0 , ê

i0 = g0i , ê
ij

= −δij + 1
2 hij (35)

and

e0
0̂

= 1 − 1
2 h00 , ei

0̂
= g0i , e0

î
= 0 , ej

î
= δij + 1

2 hij . (36)
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Vierbeins (34)–(36) are connected with the observer at rest.
The nonzero Ricci rotation coefficients are equal to

γi00 = 1
2 g00,i = −γ0i0 , γi0j = 1

2 (g0i,j + g0j,i) = −γ0ij ,

γij0 = 1
2 (g0j,i − g0i,j) , γijk = 1

2 (gjk,i − gik,j) . (37)

Alternatively, one can use the vierbeins proposed by Pomeransky and
Khriplovich [5]

e0̂0 = 1 + 1
2 h00 , e0̂i = 1

2 g0i , eî0 = −1
2 g0i , eîj = δij −

1
2 hij , (38)

and Landau and Lifshitz [23]

e0̂0 = 1 + 1
2 h00 , e0̂i = g0i , eî0 = 0 , eîj = δij −

1
2 hij . (39)

Formulae (34)–(39) are given in the weak-field approximation.
The expression for the Ricci rotation coefficients obtained in Ref. [5] with

the Pomeransky–Khriplovich tetrad differs from Eq. (37):

γabc = 1
2 (hbc,a − hac,b) = 1

2 (gbc,a − gac,b) . (40)

If a tetrad does not satisfy Eqs. (31), (32), it is not attributed to the
observer’s frame. We can consider an influence of the choice of the tetrad
on equation of spin motion (24). The connection between different tetrad
frames can be expressed by appropriate Lorentz transformations. Let the
vierbeins eµa and e′

µ
a define two tetrad frames and the unprimed vierbein is

attributed to the observer’s rest frame. The connection between tetrad and
world coordinates is given by

dxa = eaµdx
µ , dx′

a
= e′

a
µdx

µ . (41)

Eq. (41) leads to the relationship between tetrad coordinates in two frames:

dxa = T a
b dx

′b , T a
b = eaµe

′µ
b . (42)

Since this relationship defines a Lorentz transformation, the primed
frame moves with the relative velocity V . This velocity is equal to zero

only when T 0̂
î

= 0, T î
0̂

= 0, i = 1, 2, 3. In this case, the primed frame can
be obtained from the unprimed one with a turn of the triad eî in the three-
dimensional space. Evidently, this turn does not change the observer’s rest
frame and the condition V = 0 remains valid. Such a turn does not distort
the dynamics of particles and their spins, while it changes the connection
between world and tetrad velocities.
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In the general case, the primed tetrad is attributed to the reference frame
moving with the velocity V relative to the observer. As a rule, this velocity
is time-dependent. Eq. (28) shows that the three-component spins S and S′

are defined in different reference frames. Since accelerations of these frames
do not equal, the Thomas precession causes a difference between angular
velocities of rotation of the (pseudo)vectors S and S′.

As a result, the reason of the change in the spin motion equation is the
Thomas precession. For relativistic particles, the angular velocity of the
Thomas precession is given by [15,32]

ΩT = −
γ

γ + 1
(β × β̇) , (43)

where γ = 1/
√

1 − β2 is the Lorentz factor.
The dependence of spin motion equation (24) from the choice of the

tetrad was not taken into account in Refs. [5, 25]. The tetrad used in
Refs. [5, 25] for a derivation of equations of spin motion in the world frame
satisfies Eqs. (31), (32) only for static spacetimes. To determine the observ-
able angular velocity for nonstatic spacetimes, one needs to supplement the
PKE with the correction for the Thomas precession.

To illustrate a dependence of Eq. (24) from the choice of the tetrad, we
consider the spin motion in the rotating frame. This problem can be solved
exactly. The metric tensor is given by [31]

gµν =























1−
(ω×r)2

c2
−

(ω×r)(1)

c
−

(ω×r)(2)

c
−

(ω×r)(3)

c

−
(ω×r)(1)

c
−1 0 0

−
(ω×r)(2)

c
0 −1 0

−
(ω×r)(3)

c
0 0 −1























, (44)

where ω is the angular frequency of the frame rotation. The use of Eqs. (26),
(34)–(36) results in the following equation of particle motion:

dû

dt
= −ω × û ,

du0̂

dt
= 0 . (45)

Eq. (45) leads to the right equation for the contravariant acceleration
duµ/(dt) coinciding with the well-known formula [33] for the sum of the
Coriolis and centrifugal accelerations.

The corresponding angular velocity of spin motion obtained fromEq. (24)
is given by

Ω = −ω . (46)
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This formula is also exact and coincides with previous results [31, 34, 35].
Pomeransky–Khriplovich vierbein (38) leads to the formula

Ω = −ω +
u × (u × ω)

2u0(u0 + 1)
. (47)

The use of Landau–Lifshitz vierbein (39) results in

Ω = −ω +
u × (u × ω)

u0(u0 + 1)
. (48)

Eqs. (47), (48) are obtained in the weak-field approximation. Evidently,
these equations do not give the observable angular velocity defined by
Eqs. (46).

6. Comparison of spin effects in classical and quantum gravity

The correspondence principle formulated by Niels Bohr predicts a simi-
larity of classical and quantum effects.

The best compliance between the description of spin effects in classical
and quantum gravity was proved in Refs. [36, 37]. In these works, some
Hamiltonians in the Dirac representation derived in Refs. [29–31] from ini-
tial Dirac equation (29) were used. The initial Dirac Hamiltonians were
transformed to the Foldy–Wouthyusen (FW) representation by the method
elaborated in Ref. [38]. The FW representation [39] occupies a special place
in the quantum theory. Properties of this representation are unique. The
Hamiltonian and all operators are block-diagonal (diagonal in two spinors).
Relations between the operators in the FW representation are similar to
those between the respective classical quantities. For relativistic particles in
external fields, operators have the same form as in the nonrelativistic quan-
tum theory. For example, the position operator is r and the momentum
one is p = −i~∇. These properties considerably simplify the transition to
the semiclassical description. As a result, the FW representation provides
the best possibility of obtaining a meaningful classical limit of the relativis-
tic quantum mechanics. The basic advantages of the FW representation
are described in Refs. [38–40]. The method of the FW transformation for
relativistic particles in external fields was proposed in Ref. [38].

The exact transformation of the Dirac equation for the metric

ds2 = V 2(r)(dx0)2 −W 2(r)(dr · r) (49)

to the Hamiltonian form was carried out by Obukhov [29,30] (~ = c = 1):

i
∂ψ

∂t
= Hψ , H = βmV + 1

2 {F ,α · p} , (50)
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where F = V/W . Hamiltonian (50) covers the cases of a weak Schwarzschild
field in the isotropic coordinates

V =

(

1 −
GM

2r

)(

1 +
GM

2r

)−1

, W =

(

1 +
GM

2r

)2

, (51)

and a uniformly accelerated frame

V = 1 + a · r , W = 1 . (52)

The relativistic FW Hamiltonian derived in Ref. [36] has the form

HFW = βǫ+
β

2

{

m2

ǫ
, V − 1

}

+
β

2

{

p2

ǫ
,F − 1

}

(53)

−
βm

4ǫ(ǫ+m)
[Σ · (φ × p) − Σ · (p × φ) + ∇·φ]

+
βm(2ǫ3 + 2ǫ2m+ 2ǫm2 +m3)

8ǫ5(ǫ+m)2
(p ·∇) (p ·φ)

+
β

4ǫ
[Σ · (f × p) − Σ · (p × f) + ∇·f ] −

β(ǫ2 +m2)

4ǫ5
(p ·∇)(p ·f) ,

where ǫ =
√

m2 + p2, φ = ∇V, f = ∇F .
The use of the FW representation dramatically simplifies the derivation

of quantum equations. The operator equations of momentum and spin mo-
tion obtained via commutators of the Hamiltonian with the momentum and
polarization operators take the form [36]

dp

dt
= i [HFW,p] = −

β

2

{

m2

ǫ
,φ

}

−
β

2

{

p2

ǫ
,f

}

+
m

2ǫ(ǫ+m)
∇
(

Π · (φ × p)
)

−
1

2ǫ
∇
(

Π · (f × p)
)

(54)

and

dΠ

dt
= i[HFW,Π ] =

m

ǫ(ǫ+m)
Σ × (φ × p) −

1

ǫ
Σ × (f × p) , (55)

respectively.
Let us pass to the studies of semiclassical limit of these equations. The

contribution of the lower spinor is negligible and the transition to the semi-
classical description is performed by averaging the operators in the equations
for the upper spinor [38]. It is usually possible to neglect the commutators
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between the coordinate and momentum operators. As a result, the opera-
tors σ and p should be substituted by the corresponding classical quantities:
the polarization vector (doubled average spin), ξ, and the momentum. For
the latter quantity, we retain the notation p. The semiclassical equations of
motion are [36]

dp

dt
=−

m2

ǫ
φ−

p2

ǫ
f+

m

2ǫ(ǫ+m)
∇
(

ξ · (φ × p)
)

−
1

2ǫ
∇
(

ξ · (f × p)
)

(56)

and

dξ

dt
=

m

ǫ(ǫ+m)
ξ × (φ × p) −

1

ǫ
ξ × (f × p) , (57)

respectively. In Eq. (56), two latter terms describe a force dependent on
the spin. This force is similar to the electromagnetic Stern–Gerlach force
(see Ref. [38]). Because it is weak, the approximate semiclassical equation
of particle motion takes the form

dp

dt
= −

m2

ǫ
φ −

p2

ǫ
f . (58)

The angular velocity of spin rotation is given by

Ω = −
m

ǫ(ǫ+m)
(φ × p) +

1

ǫ
(f × p) . (59)

We can find similar equations describing a change of the direction of
particle momentum, n = p/p :

dn

dt
= ω × n , ω =

m2

ǫp

(

φ × n
)

+
p

ǫ

(

f × n
)

. (60)

A simple calculation shows that the corresponding equations of motion
obtained from the PKE for given metric (49) coincide with Eqs. (56)–
(60). In particular, the gravitational Stern–Gerlach force defined by Eq. (56)
coincides with that obtained from the PKE. The comparison with previous
results obtained in framework of classical gravity was carried out in Ref. [36].

Although the gravitational Stern–Gerlach forces are rather weak, they
are important. These forces lead to the violation of the weak equivalence
principle due to deflections of spinning particles from geodesic lines [41].

Let us consider the interaction of particles with a spherically symmetric
gravitational field and compare the obtained formulae with previous results.
This field is a weak limit of the Schwarzschild one which yields

V = 1 −
GM

r
, W = 1 +

GM

r
. (61)
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When we neglect the terms of the order of
(p · ∇)(p · g)

ǫ2
, Hamiltonian

(54) takes the form

HFW = βǫ−
β

2

{

ǫ2 + p2

ǫ
,
GM

r

}

−
β(2ǫ+m)

4ǫ(ǫ+m)

[

2Σ · (g × p) + ∇ · g

]

, (62)

where g is the Newtonian acceleration.
Neglecting the Stern–Gerlach force, one gets the semiclassical expressions

for the angular velocities of rotation of unit momentum vector, n = p/p,
and spin:

ω = −
ǫ2 + p2

ǫp2
g × p =

GM

r3
·
ǫ2 + p2

ǫp2
l , (63)

Ω = −
2ǫ+m

ǫ(ǫ+m)
g × p =

GM

r3
·

2ǫ+m

ǫ(ǫ+m)
l , (64)

where l = r × p is the angular moment.
Eqs. (63) and (64) agree with the classical gravity. Eq. (63) leads to the

expression for the angle of particle deflection by a gravitational field

θ =
2GM

ρ

(

2 +
m2

p2

)

=
2GM

ρv2

(

1 + v2
)

(65)

coinciding with Eq. (13) of Problem 15.9 from Ref. [42] (see also Ref. [43]).
Eq. (64) coincides with the corresponding classical equation obtained in
Ref. [5]. This directly proves the full compatibility of quantum and classical
considerations.

In the nonrelativistic approximation, Eq. (64) coincides with correspond-
ing formula (8) for the classical gyroscope. Such a similarity [13] of classical
and quantum rotators is a manifestation of the equivalence principle (see
e.g. Refs. [14, 44] and references therein). In the nonrelativistic approxima-
tion, the last term in Hamiltonian (62) describing the spin-orbit and contact
(Darwin) interactions coincides with the corresponding term in Ref. [45].

Performing the FW transformation for relativistic particles made it pos-
sible to solve the problem of existence of the dipole spin-gravity coupling in
a static gravitational field [36]. This problem was discussed for a long time
(see Refs. [12, 29, 30, 36] and references therein). Evidently, this coupling
given in form (9) contradicts to the theory [5, 36] and violates both the CP
invariance and the relation predicting the absence of the GDM [13]. The
classical and quantum approaches lead to the same conclusion.
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The equation for the Hamiltonian and the equations of momentum and
spin motion derived in Ref. [36] for a relativistic particle in a uniformly
accelerated frame agree with the corresponding nonrelativistic expressions
from [31,46]. The general equations for the angular velocities of rotation of
unit momentum vector and spin are given by

ω =
ǫ

p2

(

a × p
)

, Ω =
a × p

ǫ+m
. (66)

The FW Hamiltonian and the operators of velocity and acceleration were
also calculated for the Dirac particle in the rotating frame [37]. The exact
Dirac Hamiltonian derived in Ref. [31] was used. In Ref. [37], perfect agree-
ment between classical and quantum approaches was also established. The
operators of velocity and acceleration are equal to

v = β
p

ǫ
− ω × r , ǫ =

√

m2 + p2 ,

w = 2β
p × ω

ǫ
+ ω × (ω × r) = 2v × ω − ω × (ω × r) . (67)

Quantum formula (67) for the acceleration of the relativistic spin-1/2 particle
coincides with the classical formula [33] for the sum of the Coriolis and
centrifugal accelerations. Obtained results also agree with the corresponding
nonrelatiistic formulae from [31].

Thus, the classical and quantum approaches are in full agreement. Pu-
rely quantum effects are not too important. They consist in appearing some
additional terms in the FW Hamiltonian. However, these terms are pro-
portional to derivatives of φ and f and similar to the well-known Darwin
term in the electrodynamics. As a result, their influence on the motion of
particles and their spins in gravitational fields can be neglected. The classi-
cal and quantum equations of motion of particles and their spins are almost
identical and can differ only in small terms.

7. Equivalence principle and spin

As mentioned above, the absence of the AGM and GDM is very similar to
the weak equivalence principle. All classical and quantum spins (gyroscopes)
precess with the same angular velocity, while all classical and quantum par-
ticles move with the same acceleration. An equivalence of the inertia and
gravity manifests in the fact that all gravitational and inertial phenomena
are exhaustively defined by the metric tensor and four-velocity.

Another manifestation of the equivalence principle was found in Ref. [36].
It was shown that the motion of momentum and spin differs in a static grav-
itational field and a uniformly accelerated frame but the helicity evolution
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coincides. In Eqs. (59), (60) φ depends only on g00 but f is also a function
of gij .

The spin rotates with respect to the momentum direction and the angular
velocity of this rotation is

o = Ω − ω = −
m

p

(

φ × n
)

. (68)

The quantity o does not depend on f and vanishes for massless particles.
Therefore, the gravitational field cannot change the helicity of massless Dirac
particles. The evolution of the helicity ζ ≡ |ξ‖| = ξ · n of massive particles
is defined by the formula

dζ

dt
= (Ω − ω) · (ξ⊥ × n) = −

m

p
(ξ⊥ · φ) , (69)

where ξ⊥ = ξ − ξ‖.
The same formulae can be derived from the PKE.
For particles in the spherically symmetric gravitational field, formula (68)

takes the form
o = Ω − ω =

m

p2

(

g × p
)

. (70)

If the angle of particle momentum deflection θ is small, the evolution of
the helicity is described by the equation [36]

ζ = 1 −
θ2

2(2γ − γ−1)2
, (71)

where γ=ǫ/m is the Lorentz factor. The original helicity is supposed to be+1.
The relative angular velocity defining the helicity evolution in the uni-

formly accelerated frame is given by

o = Ω − ω = −
m

p2

(

a × p
)

. (72)

When a = −g, values of o in Eqs. (72) and (70) are the same. It is the
manifestation of the equivalence principle which was discussed with respect
to helicity evolution in [14, 44].

At the same time, the manifestation of the equivalence principle for
the spin rotation is not so trivial. In particular, the spin of nonrelativistic
particles in the spherically symmetric gravitational field rotates three times
more rapidly in comparison with the corresponding accelerated frame [36].

The helicity evolution caused by the rotation of an astrophysical object
was considered in Ref. [14]. The effect of the rotation of a field source is
characterized by the gravitomagnetic field. This field makes the velocity
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rotate twice faster than the spin and changes the helicity. Therefore, the
helicity can locally evolve due to the rotation of the field source. Neverthe-
less, the integral effect for the particle passing throughout the gravitational
field region is zero. Thus, the helicity of the scattered massive particle is
not influenced by the rotation of an astrophysical object [14]. Some other
authors came to the alternative conclusion that the above mentioned rota-
tion changes the helicity of the scattered massive particle [47,48]. To obtain
a definite solution of this problem, the PKE and the Dirac equation can be
used.

8. Discussion and summary

The general equations describing the dynamics of classical spin in grav-
itational fields and noninertial frames was obtained by Mathisson and Pa-
papetrou [4, 6] and by Pomeransky and Khriplovich [5]. The MPE and
PKE are different in principle. Nevertheless, the spin dynamics predicted
by the MPE and PKE is the same in the first-order approximation in the
spin. This important conclusion shows that the Mathisson–Papapetrou and
Pomeransky–Khriplovich approaches lead to the same observable spin ef-
fects. Results obtained with two approaches differ only in terms of the second
and higher orders in spin. These terms are proportional to derivatives of the
second and higher orders of the metric tensor. Both of approaches predict
the violation of the weak equivalence principle due to deflections of spinning
particles from geodesic lines. Such deflections are caused by the gravita-
tional Stern–Gerlach forces which are rather weak. Nevertheless, these forces
are important because they condition the violation of the weak equivalence
principle [41]. The Mathisson–Papapetrou and Pomeransky–Khriplovich ap-
proaches give different expressions for the gravitational Stern–Gerlach forces.
The expression resulting from the PKE agrees with that obtained from the
Dirac equation.

The PKE are rather convenient for description of spin motion in the
framework of classical gravity. The general equation of spin motion [5] is
valid in arbitrary spacetimes. However, the angular velocity of spin preces-
sion defined by Eq. (24) depends on the choice of the tetrad. The origin
of such a dependence is the fact that reference frames defined by different
tetrads can move relatively to each other. In this case, the corresponding
angular velocities of spin precession differ due to the Thomas precession.
We derive the exact equation describing the spin dynamics in the rotating
frame.

An important property of spin interactions with curved spacetimes is the
absence of the AGM and GDM [13]. The relations obtained by Kobzarev
and Okun lead to equal frequencies of precession of classical and quantum
spins in curved spacetimes and the preservation of helicity of Dirac particles
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in gravitomagnetic fields [14]. As a result, the behavior of classical and
quantum spins in curved spacetimes is the same and any quantum effects
cannot appear. However, this point of view was not generally accepted until
very recently.

The fact that dynamics of classical and quantum spins in curved space-
times is identical was also proved in Refs. [36, 37]. The full agreement be-
tween classical equations of momentum and spin motion and corresponding
quantum equations obtained from solution of the Dirac equation was es-
tablished. The classical and quantum equations was compared not only for
gravitational fields but also for noninertial frames. The absence of any funda-
mentally new spin effects is a manifestation of the correspondence principle.

Another manifestation of the equivalence principle is the helicity evo-
lution. While the motion of momentum and spin differs in static gravita-
tional fields and uniformly accelerated frames, the helicity evolution is the
same [36].
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