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We study the correlation in azimuthal angle between Mueller–Navelet
jets produced in hadron–hadron collisions. We argue that this observable
would test the BFKL approach at next-to-leading logarithmic accuracy. In
order to motivate such a measurement, we give predictions for jets separated
by large rapidity intervals within the Tevatron and LHC ranges.
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1. Motivation

Mueller–Navelet jets [1] in hadron–hadron scattering are two jets pro-
duced in each of the forward directions. In standard perturbative QCD cal-
culations, the partonic cross-section is computed at fixed order with respect
to the strong coupling αs, while the large logarithms coming from the strong
ordering between the hadronic scales and the jets transverse momenta are
resummed using the DGLAP evolution equation for the parton densities. In
the high-energy regime, in which the jets are separated by a large rapidity in-
terval, other large logarithms arise in the hard cross-section itself, due to the
strong ordering between the total energy and the hard scales. These can be
resummed using the BFKL equation, up to next-leading (NLL) logarithmic
accuracy [3].

Although the NLL corrections are accompanied by spurious singularities
due to the truncation of the BFKL expansion at a fixed order, it was re-
alised that renormalisation-group constrained regularisations can cure the
problem and lead to reasonable NLL–BFKL kernels. While phenomenolog-
ical studies still require approximations, strong hints of NLL–BFKL effects
have been observed in forward-jet production in lepton–hadron collisions [4].
The present study is devoted to the correlation in azimuthal angle between
Mueller–Navelet jets in hadron–hadron collisions. The goal is to motivate
this feasible measurement at the Tevatron (Run 2) and at the LHC.
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2. The azimuthal correlation between Mueller–Navelet jets

We denote
√

s the total energy of the collision, k1 and k2 the transverse
momenta of the two forward jets and y1 > 0 and y2 < 0 their rapidities.
∆Φ = π − φ1 + φ2 measures the relative azimuthal angle between the two
jets, as φ1 and φ2 are the jets angles in the plane transverse to the collision
axis. We shall work with the following kinematic variables:

∆η = y1 − y2 , y =
y1 + y2

2
, Q =

√

k1k2 , R =
k2

k1
. (1)

We are interested in an observable that is suitable to study the azimuthal
decorrelation of the jets as a function of their rapidity separation ∆η and of
the ratio of their transverse momenta R:

2π
dσ

d∆ηdRd∆Φ

/

dσ

d∆ηdR
= 1 +

2

σ0(∆η,R)

∞
∑

p=1

σp(∆η,R) cos(p∆Φ) . (2)

We have expressed the normalized cross-section (2) in terms of the Fourier
coefficients σp(∆η,R) given by

σp(∆η,R) =

∞
∫

ET

dQ

Q3







y>
∫

y<

dy x1feff

(

x1,
Q2

R

)

x2feff

(

x2, Q
2R

)







×αs

(

Q2

R

)

αs(Q
2R)G(Q,R, Y ) , (3)

where x1 and x2 denote the longitudinal fraction of momentum of the jets
with respect to the incident hadrons. In the high-energy regime in which
the rapidity interval between the two jets is assumed to be very large, they
are given by x1 = k1e

y1/
√

s and x2 = k2e
−y2/

√
s.

The effective parton distribution feff(x, k2) resums the large logarithms
log(k2/Λ2

QCD). It is given by feff = g + CF (q + q̄)/Nc in terms of g

(respectively q, q̄), the gluon (respectively quark, antiquark) distribution
in the incident hadron. Since the Mueller–Navelet jet measurement involves
perturbative values of k1 and k2 and moderate values of x1 and x2, the cross-
section features the collinear factorization of feff , with k2

1 and k2
2 chosen as

factorization scales.
In (3), we choose to apply the rapidity cuts y> =−y< = 0.5 to enforce

the symmetric situation y2 ∼ −y1. For the transverse momentum cut ET,
we will consider two options: ET = 20 GeV for the Tevatron (Run 2) and
ET = 50 GeV for the LHC. We recall that the respective center-of-mass
energies are

√
s = 1960 GeV and

√
s = 14TeV.
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The BFKL Green function G(Q,R, Y ) is the main object of the study,
it resums the large logarithms log(s/Q2). At NLL accuracy, there is an am-
biguity corresponding to the specific regularisation procedure. The results
displayed in the following are obtained with the S4 scheme of [5].

3. The BFKL Green function at NLL accuracy

There are many complications when performing a full NLL calculation
in the BFKL framework. In fact, in formula (3), we have already made the
approximation to use leading-order impact factors. Dealing with next-to-
leading order impact factors is possible, but goes beyond the scope of our
study. The NLL–BFKL Green function is given by

G(Q,R,∆η) =

1/2+∞
∫

1/2−∞

dγ

2iπ
R−2γ eᾱ(Q2)χeff [p,γ,ᾱ(Q2)]∆η (4)

with the QCD running coupling ᾱ(k2)=αs(k
2)Nc/π=

[

b log
(

k2/Λ2
QCD

)]

−1

where b = 11/12 − Nf/6Nc.
The NLL–BFKL effects are phenomenologically taken into account by

the effective kernel χeff(p, γ, ᾱ). For each value of p, the NLL–BFKL kernels
provided by the regularisation procedure χNLL(p, γ, ω) depend on γ, the
Mellin variable conjugate to R2 and ω, the Mellin variable conjugate to s/Q2.
In each case, the NLL kernels obey a consistency condition [5] which allows
to reformulate the problem in terms of the effective kernel χeff(p, γ, ᾱ) : it is
obtained from the NLL kernel χNLL(p, γ, ω) by solving the implicit equation

χeff = χNLL (p, γ, ᾱ χeff) . (5)

The NLL–BFKL kernel χNLL(p, γ, ω) is given in [6] (see also [7]), where the
regularisation procedure of [5] is extended to nonzero conformal spins p.
Finally, we point out that our NLL–BFKL predictions are parameter free.

4. Results for Mueller–Navelet jet ∆Φ distributions

In general, the ∆Φ distribution (2) is peaked around ∆Φ = 0, which
is indicative of jet emissions occuring back-to-back. In addition the ∆Φ
distribution flattens with increasing ∆η or with R deviating from 1. In the
left part of Fig. 1, we display the observable (2) as a function of ∆Φ, for
Tevatron (top) and LHC (bottom) kinematics respectively, and we test the
sensitivity of our results when using Q2/2, Q2 or 2Q2 as the renormalization
scale. The scale dependence turns out to be quite small, of about 5 percent,
except for ∆Φ close to 0, in which case the uncertainty reaches 20 percent.
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Fig. 1. Left: the Mueller–Navelet jet ∆Φ spectrum (2) for Tevatron (top) and

LHC (bottom) kinematics in the NLL–BFKL framework; the renormalization scale

uncertainty is indicated. Right: prediction for CDF (miniplugs) kinematics.

On the right plot, predictions for the ∆Φ distribution with CDF kinemat-
ics are presented. Due to miniplug detectors in the forward and backward
regions which allow to increase the acceptance in rapidity and transverse
momentum to measure very forward jets, it will indeed be possible to mea-
sure jets separated in rapidity by more than 10 units and with transverse
momenta as low as 5 GeV. With such low values of transverse momenta and
large values of rapidity interval between the two jets, it is also likely that sat-
uration effects could play an important role. First estimations [8] (with less
favorable kinematics) indicate so when considering saturation effects damp-
ing the LL–BFKL exponential growth. The implementation of saturation
effects with the NLL–BFKL growth certainly deserves to be studied.

REFERENCES

[1] A.H. Mueller, H. Navelet, Nucl. Phys. B282, 727 (1987).
[2] L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976); E.A. Kuraev, L.N. Lipatov,

V.S. Fadin, Sov. Phys. JETP 45, 199 (1977); I.I. Balitsky, L.N. Lipatov, Sov.
J. Nucl. Phys. 28, 822 (1978).

[3] V.S. Fadin, L.N. Lipatov, Phys. Lett. B429, 127 (1998); M. Ciafaloni, Phys.
Lett. B429, 363 (1998); M. Ciafaloni, G. Camici, Phys. Lett. B430, 349 (1998).

[4] O. Kepka, C. Marquet, R. Peschanski, C. Royon, Phys. Lett. B655, 236 (2007);
O. Kepka, C. Marquet, R. Peschanski, C. Royon, Eur. Phys. J. C55, 259
(2008) [hep-ph/0612261].

[5] G.P. Salam, J. High Energy Phys. 9807, 019 (1998).
[6] C. Marquet, C. Royon, 0704.3409 [hep-ph].
[7] A. Sabio Vera, F. Schwennsen, Nucl. Phys. B776, 170 (2007).
[8] C. Marquet, R. Peschanski, Phys. Lett. B587, 201 (2004); C. Marquet,

R. Peschanski, C. Royon, Phys. Lett. B599, 236 (2004); C. Marquet, C. Royon,
Nucl. Phys. B739, 131 (2006).


