HBT FROM PERFECT FLUID DYNAMICS*

M. Csanád
Eötvös University
Pázmány Péter s. 1/A, Budapest 1117, Hungary
T. CSÖRGŐ
KFKI Research Institute for Nuclear and Particle Physics
Konkoly Thege Miklós út 29-33, H-1121 Budapest, Hungary

(Received October 16, 2008)
In this paper we summarize the ellipsoidally symmetric Buda-Lund model's results on HBT radii. We calculate the Bose-Einstein correlation function from the model and derive formulas for the transverse momentum dependence of the correlation radii in the Bertsch-Pratt system of out, side and longitudinal directions. We show a comparison to $\sqrt{s_{N N}}=200 \mathrm{GeV}$ RHIC PHENIX two-pion correlation data and make prediction on the same observable for different particles.

PACS numbers: 25.75.Gz, 45.75.+f

1. Perfect fluid hydrodynamics

Perfect fluid hydrodynamics is based on local conservation of entropy and four-momentum. The fluid is perfect if the four-momentum tensor is diagonal in the local rest frame. The conservation equations are closed by the equation of state, which gives the relationship between energy density ϵ, pressure p. Typically $\epsilon=\kappa p$ is assumed, where κ may be a constant, but can be an arbitrary temperature dependent function.

There are only a few exact solutions for these equations. One (and historically the first) is the famous Landau-Khalatnikov solution discovered more than 50 years ago [1-3]. This is a $1+1$ dimensional solution, and has realistic properties: it describes a $1+1$ dimensional expansion, does not lack acceleration and predicts a Gaussian longitudinal rapidity distribution.

Another renowned relativistic hydrodynamical solution is the Hwa-Bjorken solution [4-6], which is a simple, explicit and exact, but accelerationless solution. This solution is boost-invariant in its original form, but this

[^0]approximation fails to describe the data $[7,8]$. However, the solution allowed Bjorken to obtain a simple estimate of the initial energy density reached in high energy reactions from final state hadronic observables.

There are solutions which interpolate between the above two solutions $[9,10]$, are explicit and describe a relativistic acceleration.

2. The Buda-Lund model

We focus here on the analytic approach in exploring the consequences of the presence of such perfect fluids in high energy heavy ion experiments in $\mathrm{Au}+\mathrm{Au}$ collisions at RHIC. Such exact analytic solutions were published recently in Refs. [9-13]. A tool, that is based on the above listed exact, dynamical hydro solutions, is the Buda-Lund hydro model of Refs. [14, 15].

The Buda-Lund hydro model successfully describes BRAHMS, PHENIX, PHOBOS and STAR data on identified single particle spectra and the transverse mass dependent Bose-Einstein or HBT radii as well as the pseudorapidity distribution of charged particles in central $\mathrm{Au}+\mathrm{Au}$ collisions both at $\sqrt{s_{N N}}=130 \mathrm{GeV}[16]$ and at $\sqrt{s_{N N}}=200 \mathrm{GeV}[17]$ and in $p+p$ collisions at $\sqrt{s}=200 \mathrm{GeV}$ [18], as well as data from $\mathrm{Pb}+\mathrm{Pb}$ collisions at CERN SPS [19] and $h+p$ reactions at CERN SPS [20,21]. The model is defined with the help of its emission function; to take into account the effects of long-lived resonances, it utilizes the core-halo model [22]. It describes an expanding fireball of ellipsoidal symmetry (with the time-dependent principal axes of the ellipsoid being X, Y and Z).

3. HBT from the Buda-Lund model

Let us calculate the two-particle Bose-Einstein correlation function from the Buda-Lund source function of the Buda-Lund model as a function of $q=p_{1}-p_{2}$, the four-momentum difference of the two particles. The result is

$$
\begin{equation*}
C(q)=1+\lambda e^{-q_{0}^{2} \Delta \tau_{*}^{2}-q_{x}^{2} R_{*, x}^{2}-q_{y}^{2} R_{*, y}^{2}-q_{z}^{2} R_{*, z}^{2}} \tag{1}
\end{equation*}
$$

with λ being the intercept parameter (square of the ratio of particles emitted from the core versus from the halo [22]), and

$$
\begin{align*}
& \frac{1}{\Delta \tau_{*}^{2}}=\frac{1}{\Delta \tau^{2}}+\frac{m_{t}}{T_{0}} \frac{d^{2}}{\tau_{0}^{2}}, \tag{2}\\
& R_{*, x}^{2}=X^{2}\left(1+m_{\mathrm{t}}\left(a^{2}+\dot{X}^{2}\right) / T_{0}\right)^{-1} \tag{3}\\
& R_{*, y}^{2}=Y^{2}\left(1+m_{\mathrm{t}}\left(a^{2}+\dot{Y}^{2}\right) / T_{0}\right)^{-1} \tag{4}\\
& R_{*, z}^{2}=Z^{2}\left(1+m_{\mathrm{t}}\left(a^{2}+\dot{Z}^{2}\right) / T_{0}\right)^{-1}, \tag{5}
\end{align*}
$$

with $\dot{X}, \dot{Y}, \dot{Z}$ being the time-derivative of the principal axes, m_{t} the average transverse mass of the pair. T_{0} is the central temperature at the freeze-out, $\Delta \tau$ is the mean emission duration and τ_{0} is the freeze-out time. Furthermore, a and d are the spatial and time-like temperature gradients, defined as $a^{2}=$ $\left\langle\frac{\Delta T}{T}\right\rangle_{\perp}$ and $d^{2}=\left\langle\frac{\Delta T}{T}\right\rangle_{\tau}$. From the mass-shell constraint one finds $q_{0}=$ $\beta_{x} q_{x}+\beta_{y} q_{y}+\beta_{z} q_{z}$, if expressed by the average velocity β. Thus we can rewrite Eq. 1 to

$$
\begin{equation*}
C(q)=1+\lambda_{*} \exp \left(-\sum_{i, j=x, y, z} R_{i, j}^{2} q_{i} q_{j}\right) \tag{6}
\end{equation*}
$$

with the modified radii of

$$
\begin{equation*}
R_{i, i}^{2}=R_{*, i}^{2}+\beta_{i}^{2} \Delta \tau_{*}^{2}, \quad \text { and } \quad R_{i, j}^{2}=\beta_{i} \beta_{j} \Delta \tau_{*}^{2} \tag{7}
\end{equation*}
$$

From this, we can calculate the radii in the Bertsch-Pratt frame [23] of out (o , pointing towards the average momentum of the actual pair, rotated from x by an azimuthal angle φ), longitudinal (1, pointing towards the beam direction) directions and side (s, perpendicular to both 1 and o) directions. If one averages on the azimuthal angle, and goes into the LCMS frame (where $\beta_{1}=\beta_{\mathrm{s}}=0$), the Bertsch-Pratt radii are:

$$
\begin{align*}
& R_{\mathrm{o}}^{2}=\left(R_{*, x}^{-2}+R_{*, y}^{-2}\right)^{-1}+\beta_{\mathrm{o}}^{2} \Delta \tau_{*}^{2}, \tag{8}\\
& R_{\mathrm{s}}^{2}=\left(R_{*, x}^{-2}+R_{*, y}^{-2}\right)^{-1}, \tag{9}\\
& R_{1}^{2}=R_{*, z}^{2} . \tag{10}
\end{align*}
$$

These can be fitted then to the data [24] as was done in Ref. [25], see Fig. 1.

Fig. 1. HBT radii from the axially Buda-Lund model from Ref. [25], compared to data of Ref. [24]. We also show a prediction for kaon HBT radii on this plot: these overlap with that of pions if plotted versus transverse mass m_{t}.

This allows us to predict the transverse momentum dependence of the HBT radii of two-kaon correlations as well: if they are plotted versus m_{t}, the data of all particles fall on the same curve. This is also shown for kaons in Fig. 1.

REFERENCES

[1] L.D. Landau, Izv. Akad. Nauk SSSR Ser. Fiz. 17, 51 (1953).
[2] I.M. Khalatnikov, Zhur. Eksp. Teor. Fiz. 27, 529 (1954).
[3] S.Z. Belenkij, L.D. Landau, Nuovo Cim. Suppl. 3S10, 15 (1956).
[4] R.C. Hwa, Phys. Rev. D10, 2260 (1974).
[5] C.B. Chiu, E.C.G. Sudarshan, K.-H. Wang, Phys. Rev. D12, 902 (1975).
[6] J.D. Bjorken, Phys. Rev. D27, 140 (1983).
[7] B.B. Back et al., Phys. Rev. Lett. 87, 102303 (2001).
[8] I.G. Bearden et al., Phys. Rev. Lett. 88, 202301 (2002).
[9] T. Csörgő, M.I. Nagy, M. Csanád, Phys. Lett. B663, 306 (2008) [nucl-th/0605070].
[10] T. Csörgő, M.I. Nagy, M. Csanád, Braz. J. Phys. 37, 723 (2007) [nucl-th/0702043].
[11] T. Csörgő et al., Phys. Rev. C67, 034904 (2003).
[12] T. Csörgő et al., Phys. Lett. B565, 107 (2003).
[13] Y.M. Sinyukov, I.A. Karpenko, Acta Phys. Hung. A25, 141 (2006).
[14] T. Csörgő, B. Lörstad, Phys. Rev. C54, 1390 (1996).
[15] M. Csanád, T. Csörgő, B. Lörstad, Nucl. Phys. A742, 80 (2004).
[16] M. Csanád et al., Acta Phys. Pol. B 35, 191 (2004).
[17] M. Csanád et al., Nukleonika 49, S49 (2004).
[18] T. Csörgő et al., Acta Phys. Hung. A24, 139 (2005).
[19] A. Ster, T. Csörgő, B. Lörstad, Nucl. Phys. A661, 419 (1999).
[20] T. Csörgő, Heavy Ion Phys. 15, 1 (2002).
[21] N.M. Agababyan et al., Phys. Lett. B422, 359 (1998).
[22] T. Csörgő, B. Lörstad, J. Zimányi, Z. Phys. C71, 491 (1996).
[23] S. Pratt, Phys. Rev. D33, 1314 (1986).
[24] S.S. Adler et al., Phys. Rev. Lett. 93, 152302 (2004).
[25] M. Csanád et al., J. Phys. G30, S1079 (2004).

[^0]: * Presented at the XXXVII International Symposium on Multiparticle Dynamics, Berkeley, USA, August 4-9, 2007.

