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In this paper we summarize the ellipsoidally symmetric Buda–Lund
model’s results on HBT radii. We calculate the Bose–Einstein correlation
function from the model and derive formulas for the transverse momentum
dependence of the correlation radii in the Bertsch–Pratt system of out, side
and longitudinal directions. We show a comparison to

√
sNN = 200 GeV

RHIC PHENIX two-pion correlation data and make prediction on the same
observable for different particles.

PACS numbers: 25.75.Gz, 45.75.+f

1. Perfect fluid hydrodynamics

Perfect fluid hydrodynamics is based on local conservation of entropy
and four-momentum. The fluid is perfect if the four-momentum tensor is
diagonal in the local rest frame. The conservation equations are closed by
the equation of state, which gives the relationship between energy density
ǫ, pressure p. Typically ǫ = κp is assumed, where κ may be a constant, but
can be an arbitrary temperature dependent function.

There are only a few exact solutions for these equations. One (and his-
torically the first) is the famous Landau–Khalatnikov solution discovered
more than 50 years ago [1–3]. This is a 1+1 dimensional solution, and has
realistic properties: it describes a 1+1 dimensional expansion, does not lack
acceleration and predicts a Gaussian longitudinal rapidity distribution.

Another renowned relativistic hydrodynamical solution is the Hwa–Bjo-
rken solution [4–6], which is a simple, explicit and exact, but acceleration-
less solution. This solution is boost-invariant in its original form, but this
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approximation fails to describe the data [7,8]. However, the solution allowed
Bjorken to obtain a simple estimate of the initial energy density reached in
high energy reactions from final state hadronic observables.

There are solutions which interpolate between the above two solu-
tions [9, 10], are explicit and describe a relativistic acceleration.

2. The Buda–Lund model

We focus here on the analytic approach in exploring the consequences
of the presence of such perfect fluids in high energy heavy ion experiments
in Au+Au collisions at RHIC. Such exact analytic solutions were published
recently in Refs. [9–13]. A tool, that is based on the above listed exact,
dynamical hydro solutions, is the Buda–Lund hydro model of Refs. [14, 15].

The Buda–Lund hydro model successfully describes BRAHMS, PHENIX,
PHOBOS and STAR data on identified single particle spectra and the trans-
verse mass dependent Bose–Einstein or HBT radii as well as the pseudora-
pidity distribution of charged particles in central Au+Au collisions both at
√

sNN = 130 GeV [16] and at
√

sNN = 200 GeV [17] and in p+p collisions at√
s = 200 GeV [18], as well as data from Pb+Pb collisions at CERN SPS [19]

and h+p reactions at CERN SPS [20, 21]. The model is defined with the
help of its emission function; to take into account the effects of long-lived
resonances, it utilizes the core-halo model [22]. It describes an expanding
fireball of ellipsoidal symmetry (with the time-dependent principal axes of
the ellipsoid being X, Y and Z).

3. HBT from the Buda–Lund model

Let us calculate the two-particle Bose–Einstein correlation function from
the Buda–Lund source function of the Buda–Lund model as a function of
q = p1 − p2, the four-momentum difference of the two particles. The result
is

C(q) = 1 + λe−q2
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with λ being the intercept parameter (square of the ratio of particles emitted
from the core versus from the halo [22]), and
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with Ẋ, Ẏ , Ż being the time-derivative of the principal axes, mt the average
transverse mass of the pair. T0 is the central temperature at the freeze-out,
∆τ is the mean emission duration and τ0 is the freeze-out time. Furthermore,
a and d are the spatial and time-like temperature gradients, defined as a2 =
〈

∆T
T

〉

⊥
and d2 =

〈

∆T
T

〉

τ
. From the mass-shell constraint one finds q0 =

βxqx + βyqy + βzqz, if expressed by the average velocity β. Thus we can
rewrite Eq. 1 to

C(q) = 1 + λ∗ exp



−
∑

i,j=x,y,z

R2
i,jqiqj



 (6)

with the modified radii of
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∗ , and R2
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∗ . (7)

From this, we can calculate the radii in the Bertsch–Pratt frame [23] of
out (o, pointing towards the average momentum of the actual pair, rotated
from x by an azimuthal angle ϕ), longitudinal (l, pointing towards the beam
direction) directions and side (s, perpendicular to both l and o) directions. If
one averages on the azimuthal angle, and goes into the LCMS frame (where
βl = βs = 0), the Bertsch–Pratt radii are:
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These can be fitted then to the data [24] as was done in Ref. [25], see Fig. 1.

Fig. 1. HBT radii from the axially Buda–Lund model from Ref. [25], compared to

data of Ref. [24]. We also show a prediction for kaon HBT radii on this plot: these

overlap with that of pions if plotted versus transverse mass mt.
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This allows us to predict the transverse momentum dependence of the HBT
radii of two-kaon correlations as well: if they are plotted versus mt, the data
of all particles fall on the same curve. This is also shown for kaons in Fig. 1.
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