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The Color Glass Condensate has become an important tool to under-
stand saturation phenomena in high energy collisions involving large nuclei.
Until recently, the underlying JIMWLK and BK evolution equations have
been known only to one loop accuracy. Here I summarize results of the
first calculations to step beyond leading order and provide running cou-
pling corrections to both equations.
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1. High energies and saturation in QCD

With the advent of modern colliders, from the Tevatron and HERA to
RHIC and planned facilities like LHC and EIC, the high energy asymp-
totics of QCD has gained new prominence. In all these experiments soft
gluon emission is strongly enhanced by phase space logarithms in the to-
tal energy s. In QCD, such multiple soft emission is intrinsically nonlinear
since gluons carry color charge: Produced gluons act as sources for further
emission: emission accelerates. Once densities have grown, further emission
into an already dense environment will be modified by recombination and
absorption. This slows growth and leads to saturation. Accelerated growth
and saturation are both irrelevant in the electroweak sector, they require the
gauge boson to be both massless and non-Abelian.

The key points can be most easily understood in the context of deep
inelastic scattering (DIS) of leptons on proton or nuclear targets. The
dynamics is governed by the deeply space-like momentum q2 = −Q2 < 0
imparted on the nuclear target and rapidity (the “energy logarithms”)
Y = ln(1/x) ≈ ln

(
s/Q2

)
(with Bjorken x := Q2/(2p.q), p the target mo-

mentum). Q2 defines the transverse resolution of the probe.
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At large Q2 with fixed x such a system may be analyzed in terms of the
twist expansion, a short-distance expansion in powers of 1/Q2. Since Q2

controls the apparent size of the particles encountered, this may be viewed
as a small density expansion.

Going to small x at fixed Q2, no matter how large, one enters a domain of
high densities since one keeps adding particles that are all of a fixed effective
size of order 1/Q2. Density will grow to a point where particle correlations
become essential and a description in terms of distribution functions alone
becomes untenable. Appropriate degrees of freedom and more general evo-
lution equations are needed to describe the system beyond this point. The
most general of these existing to date are the JIMWLK equation, or, the
completely equivalent Balitsky hierarchies, with their factorized truncation,
the Balitsky–Kovchegov (BK) equation. In the low density limit they reduce
to the Balitsky–Fadin–Lipatov–Kuraev (BFKL) equations. [1–3] may serve
as a guide to the literature.

JIMWLK and BK equations are based on a no recoil approximation for
the constituents of the projectile wave function (justified by the high collision
energies). It allows a description of the interaction of each constituent of the
projectile with the target in terms of path-ordered exponentials Ux aligned
with the projectile trajectory. x represents the transverse coordinate of the
constituent during the interaction. In leading order the γ∗A cross-section in
DIS turns then into a convolution of the absolute value squared of the pro-
jectile (photon) wave function and the dipole cross-section

∫
d2b 〈N̂xy〉(Y ).

The former gives the probability to find a qq̄ pair of a given size r = x − y

in the projectile at momentum transfer Q2. The latter gives the cross-
section of a qq̄ pair at transverse positions x and y with the target. (The
integral is over impact parameter b = (x + y)/2.) The T -matrix average

〈N̂xy〉 := 〈Tr (1 − UxU †
y)/Nc〉(Y ) encodes all details of the interaction with

the target field via U -fields and the averaging procedure. Its energy de-
pendence is accessible perturbatively and can be traced via terms enhanced
by αs ln(1/x). These corrections are resummed by the JIMWLK equation,
an equation for the statistical weight functional for the average 〈. . .〉(Y ).
The functional equation is equivalent to infinite hierarchies of equations for
multi-U -correlators, the Balitsky hierarchies. The evolution equation for the
dipole operator at leading order has the form

d

dY

〈 〉

=

〈

+ + . . .

〉

. (1)

The diagrams contain q and q̄ lines (leaning left along the x−-direction) and
interactions with the target gluons (U -fields) concentrated at x− = 0 (the
line leaning to the right), marked as dots. The diagrams on the right rep-
resent real corrections (1st) in which the interaction of the newly produced
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gluon with the target frees it to reach the final state, and virtual correc-
tions (2nd) where the new gluon does not interact with the target. “ . . .”
represents diagrams with alternative locations of the qq̄g vertices. The left
hand side and the virtual term on the right hand side only contain target

interaction of a dipole via the operator Tr (UxU †
y). The real emission term

on the other hand contains an additional gluonic Wilson line in the form

Uab
z

Tr (taUxtbU †
y) and couples this equation to the other equations in its

Balitsky hierarchy. At this order of accuracy the right hand side is propor-
tional to the strong coupling at a fixed but undetermined scale µ2.

2. Running coupling triumvirates

It has been noted early that running coupling effects play a role that is
much more prominent than in the well known DGLAP evolution that would
resum Q2 corrections in a dilute regime. There the natural scale for the
coupling is Q2 and thus is one fixed number in each step of the evolution.
For evolution towards small x, Eq. (1) on its r.h.s. contains integrals over
all transverse space and samples the coupling on all scales in each individ-
ual step of the evolution. Non-perturbative influence near the Landau pole
is largely shielded by saturation effects, but the perturbative variation has
a large impact: it is solely responsible for a reduced gluon emission from
small dipoles [4]. Such slowdown effects are essential for phenomenology.
Yet, these corrections have only recently been calculated [5–7] using a re-
summation of quark loops to trace the Nf part of the β-function. The gluon
contributions are restored by substituting Nf → −6β0. The problem is then
reduced to a study of the quark bubble insertions shown in Fig. 1. The right-

tr(taUxUyyta) Uabz 2tr(taUxtbUyy) 2tr(taUz1tbUyz2)�2tr(taUxtbUyy)
Fig. 1. Running coupling corrections to virtual (left) and real diagrams (right).

most diagram contains a new channel, where a qq̄ pair instead of a gluon
interacts with the target. This contribution overlaps with the running of the
coupling in the UV, where the interacting qq̄ pair coalesces and its interaction

with the target reduces to that of a gluon: lim
z1,z2→z

2Tr (taUz1
tbU †

z2
) = Uab

z
.

To generate a renormalized coupling and to guarantee real virtual cancel-
lation in the absence of target interaction (probability conservation), sepa-
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rately for the running coupling corrected leading order terms and the new
channel, one has to separate this UV-divergent contribution from the new
qq̄ channel by adding and subtracting the contribution of this diagram with

the quark interaction 2Tr (taUz1
tbU †

z2
) replaced by a gluon interaction Uab

z

placed at a suitable coordinate z according to

→

[

−

]

︸ ︷︷ ︸

UV-finite → new channel

+

︸ ︷︷ ︸
coupling

. (2)

While this implies a scheme dependence for the separation of these con-
tributions it does not affect the sum. The running coupling corrected real
emission term now takes the form

+ =

(

+

)

. (3)

This structure reveals that the running coupling factor in momentum space

takes the form of a triumvirate
αs(q

2)αs(q′2)
αs(Q̃2)

where the numerator factors

arise from the bubble chains to the left and right of the interaction. They
depend on the off-shell-ness of the gluon lines q2 and q′2 before and after the
interaction. αs(Q̃

2) obtains its logarithm from the UV part of the interacting

quark loop. Its scale Q̃ is a function of q and q′ whose details depend on
the separation scheme for the new channels with explict expressions given
in [6]. This contribution is O(αs) while the new channel in (2) is O(α2

s ).
Numerical work shows that these corrections go a long way to help match
up with experimental data at HERA [8] and RHIC [9].
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